DOI QR코드

DOI QR Code

A Study on the Pyrolysis and Combustion Properties on Industrial Plastics

산업용 플라스틱 재료의 열분해 및 연소 특성에 관한 연구

  • Lim, Bosu (Dept. of Safety Engineering, Korea National University of Transportation) ;
  • An, Hyunghwan (Dept. of Safety Engineering, Korea National University of Transportation)
  • 임보수 (한국교통대학교 안전공학과) ;
  • 안형환 (한국교통대학교 안전공학과)
  • Received : 2015.12.23
  • Accepted : 2016.02.23
  • Published : 2016.02.29

Abstract

This study is analyzed by the test equipment of gas analyzer in order to discover the gas characteristics of industrial plastic under the pyrolysis and combustion. As results, first, the pyrolysis of polycarbonate was started at $400{\sim}450^{\circ}C$. The combustion started at about $608^{\circ}C$, and the weight decreased at the velocity was 0.03g/min. Second, in case of polyethyleneterephtalate, PET was finished at $620^{\circ}C$ after starting pyrolysis from $420^{\circ}C$, and the weight decreased at the velocity of 0.044g/min. The pyrolysis velocity with the temperature of polyethyleneterephtalate rising was becoming slow and the pyrolysis temperature was higher with less added polyethyleneterephtalate.

산업용플라스틱의 열분해 및 연소시 연소가스 배출 특성을 알아보기 위하여 유해가스 측정 장치를 이용하여 분석하였다. 첫 번째 결과로써 PC의 경우 열분해는 $400{\sim}450^{\circ}C$에서 분해가 진행되어 약 $608^{\circ}C$에서 연소가 진행되는 것으로 나타났다. 이 때 연소 전까지의 중량감소 속도는 0.03g/min이었다. 둘째 PET의 경우는 PC와 유사하게 $420^{\circ}C$에서 분해가 시작하여 $620^{\circ}C$에서 완료가 되는 것으로 나타났고, 연소 전 중량감소 속도는 0.044g/min인 것을 보였다. PET의 온도 상승에 따른 열분해속도는 염료가 첨가되어있는 경우 열분해속도가 느려지고 분해온도가 높아졌다.

Keywords

References

  1. Korea Occupational Safety & Health Agency, Statistics on Occupational Accidents, (2006)
  2. Shin, D. H., Yoon, W. L., and Choi, I. S., "Chemical Recycling of Plastic Waste and Pyrolsis Technologyies for Oil Production", Polymer Science and Technology, 13(3), 322-331, (2002)
  3. Lee B. K., Kim, H.A., "Analysis of VOCs Produced from Incineration of Plastic Wastes Using a Small- Electric Furnace", Journal of Korean Society for Atmospheric Environment, 20(6), 759-771, (2004)
  4. Kim, T. S., Oh, S. H., Lee, H. P., Yoo, K. O., "A Study on the combustability of the polypropylene", Proceeding of Korean Journal of Chemical Engineering, 4(2), 3637, (1998)
  5. Kim, Y. W., et al. "Economic Analysis and $CO_2$ Emissions Analysis by Circulating the Industrial Waste Resource between Companies." Clean Technology 18.1 , 111-119, (2012)
  6. Goto, M., "Chemical recycling of plastics using sub- and supercritical fluids", J. of Supercritical Fluids 47, 500-507, (2009) https://doi.org/10.1016/j.supflu.2008.10.011
  7. Okuwaki, A., "Feedstock recycling of plastics in Japan", Polymer Degradation and Stability 85 981-988, (2004) https://doi.org/10.1016/j.polymdegradstab.2004.01.023
  8. Takeshita, Y., Kato, K., Takahashi, K., Sato, Y., Nishi, S., "Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions", J. of Supercritical Fluids 31, 185-193, (2004) https://doi.org/10.1016/j.supflu.2003.10.006

Cited by

  1. A Study on the Enhancement of Inventories for Precursors (NOx, SOx) Released from Open Burning of Agricultural Waste Vinyl Causing the Secondary Generation of Particulate Matters vol.24, pp.2, 2021, https://doi.org/10.11628/ksppe.2021.24.2.195