• 제목/요약/키워드: 유한차이방법

Search Result 197, Processing Time 0.024 seconds

A Study on Prediction of Effective Material Properties of Composites with Fillers of Different Sizes and Arrangements (강화재의 크기 및 배치에 따른 복합재의 등가 물성치 예측에 대한 연구)

  • Lee, J. K.;Kim, J. G.
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • The validity of Eshelby-type model with Mori-Tanaka's mean field theory to predict the effective material properties of composites have been investigated in terms of filler size and its arrangement. The 2-dimensional plate composites including constant volume fraction of fillers are used as the model composite for the analytical studies, where the filler size and its arrangement are considered as parameters. The exact effective material properties of the composites are computed by finite element analysis(FEA), which are compared with effective material properties from the Eshelby-type model. Although the fillers are periodically or randomly arranged, the average Young's moduli by Eshelby-type model and FEA are in good agreement, specially for the ratio of specimen size to filler size being smaller than 0.03. However, Poisson's ratio of the composite by the Eshelby-type model is overestimated by $20\%$.

A Study on High Frequency Induction Hardening of S45C Specimen by FEA and Experiment (유한요소해석 및 실험에 의한 S45C 시편의 고주파 유도경화에 관한 연구)

  • Park, Kwan-Seok;Choi, Jin-kyu;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2018
  • In this study, we proposed a high frequency induction hardening analysis method based on electromagnetic-thermal co-simulation. In the high frequency induction heating analysis, the results of the finite element analysis (FEA) (considering the change of the material property and the cooling factor according to the temperature) and those of the high frequency induction hardening experiment (using the S45C specimen) were compared. The hardness of the S45C specimens was measured using the micro Vickers hardness test to determine the depth of hardening. The measurement results were then compared with the results of FEA. The result of high frequency induction heating analysis showed that the temperature was more than $750^{\circ}C$, which is the A2 transformation point of S45C, while the temperature during quenching was below $200^{\circ}C$. The results showed that the difference of the depth of hardening between the FEA and the experiment is 0.2mm.

Nonlinear Seismic Response Analysis for Shallow Soft Soil Deposits (낮은 심도의 연약지반에 대한 비선형 지진응답해석)

  • Park, Hong-Gun;Kim, Dong-Kwan;Lee, Kyung-Koo;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.1-12
    • /
    • 2010
  • This study presents a finite element analysis method that can accurately evaluate the nonlinear behaviour of structures affected by shallow soft subsoils and the soil-structure interaction. A two-dimensional finite element model that consists of a structure and shallow soft subsoil was used. The finite element model was used for a nonlinear time domain analysis of the OpenSees program. A parametric study was performed to investigate the effects of soil shear velocities, earthquake input motions, soft soil depth, and soil-structure interaction. The result of the proposed nonlinear finite element analysis method was compared with the result of an existing frequency domain analysis method, which is frequently used for addressing nonlinear soil behavior. The result showed that the frequency domain analysis, which uses equivalent secant soil stiffness and does not address the soil-structure interaction, significantly overestimated the response of the structures with short dynamic periods. The effect of the soil-structure interaction on the response spectrum did not significantly vary with the foundation dimensions and structure mass.

Comparative Analysis of Infiltration for Estimating Subsurface Runoff (지표하유출 산정을 위한 침투량의 비교분석)

  • Lee, Jae-Joon;Lee, Sung-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.540-540
    • /
    • 2012
  • 강우 발생시 유역에 집수된 물이 하천에 이르는 경로에 따른 유출은 지표유출, 지표하유출, 지하수유출로 구분된다. 정확한 수문순환 과정의 해석을 위해서는 지표 흐름뿐만 아니라 지표하 및 지하수 흐름의 해석이 중요한 실정이나 일반적으로 실무에서 사용되는 강우-유출해석 모형은 지표유출을 해석하기 위한 모형이 대부분이며, 지표하 유출과 침투량을 산정하는데 어려움이 있다. 일반적인 강우-유출해석 모형은 Horton 방법, NRCS 방법, Green-Ampt 방법에 의해 유효우량을 분리하며, 이 과정은 침투량을 직접적으로 모형화 할 수 없으므로 지표 및 지표하, 지하수 흐름을 복합적으로 해석할 수 있는 모형이 질적이나 양적으로 부족한 실정이다. 이러한 지표하 흐름과 침투량을 산정하기 위하여 FE-FLOW, PM, MS-VMS, GMS, GW-VISTAS, ARGUS 및 MODFLOW와 같은 지하수 모형을 사용하고 있다. 본 연구에서는 지표하유출 산정을 위한 침투량의 비교분석을 위해 현재 가장 범용되는 지하수 유동 모델링 프로그램인 Visual Modlfow 모형과 GMS 모형을 이용하여 침투량 산정을 위한 수치 모의를 진행하였다. 각 모형의 입력자료는 2009년 국립방재연구원에서 수행한 침투실험시설 자료를 이용하여 동일한 조건을 부여하고, 두 모형의 비교를 위해 Visual Modflow에서는 MODFLOW의 기본 해석방법인 유한차분법(FDM)을 이용하고, GMS 모형에서는 3차원 유한요소해석이 가능한 GMS-FEMWATER를 이용하였다. 두 모형의 수치모의 조건으로 2009년 국립방재연구원에서 수행한 침투실험방법과 동일하게 공극률에 따른 투수성 보도블럭의 구분과 50mm/hr, 100mm/hr, 150mm/hr, 200mm/hr의 강우강도별 선행함수조건에 따른 수치모의를 진행하였으며, 수치모의된 침투량의 적정성을 판단하기 위하여 국립방재연구원의 침투실험 결과자료와 비교분석하였다. 침투실험 자료와 각각 수치모의된 침투량을 비교분석한 결과 서로 유사한 경향을 보이고 있으나 초기 침투시 상대오차가 비교적 크게 발생하였다. 이는 수치모형의 경우 수리실험과는 다르게 모의시작과 동시에 해당 강우강도의 침투가 시작되므로 초기 유입 유출량 발생시간의 차이가 종료시간까지 누적 침투량에 미치는 것으로 판단되며, 매개변수에 많은 영향을 받는 것으로 판단된다.

  • PDF

Reliability Analysis of Plane Stress Element According to Limit State Equations (한계상태방정식에 따른 평면응력요소의 신뢰성해석)

  • Park, Seok Jae;Choi, Wae Ho;Kim, Yo Suk;Shin, Yeong-Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • In order to consider statistical properties of probability variables used in the structural analysis the conventional approach using the safety factor based on past experience usually estimated the safety of a structure Also the real structures could only be analyzed with the error in estimation of loads material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis Safety of structure could not precisely be appraised by the traditional structural design concept Recently new aproach based on the probability concept has been applied to the assessment of structural safety using the reliability concept Thus the computer program by the Probabilitstic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. Verification of the reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. The proper failure criterion according to characteristic of materials must be used for safe design.

  • PDF

Determination of CPT-based Bearing Capacity of Footings Under Surcharge Using State-dependent Finite Element Analysis (상태의존성 유한요소해석 및 CPT결과를 적용한 상재하중하의 얕은 기초의 지지력 결정)

  • Lee Jun-Hwan;Kim Dae-Ho;Park Dong-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.55-62
    • /
    • 2005
  • The use of the bearing capacity equation is subjected to several uncertainties. In this study, estimation of the bearing capacity of footings based on the cone resistance q$_{c}$ is investigated. Non-linear finite element analyses based on a state-dependent stress-strain model were performed to obtain the load-settlement responses of axially loaded circular footings. Various soil and footing conditions, including different relative densities, depths of embedment, and footing diameters were considered in the analyses. Based on the finite element results, load-settlement curves were obtained and used to determine the unit limit bearing capacity in terms of the cone resistance q$_{c}$ for footings subjected to surcharge. Values of the unit bearing capacity for different embedment depths were in a narrow range, while considerable variation was observed with relative density D$_{R}$. It was observed that the unit limit bearing capacity normalized with respect to q$_{c}$ decreases as D$_{R}$ increases for a given surcharge.

Comparison of Saturated and Unsaturated Water Flows through Pavement Systems

  • Lim, Yu-Jin;Hue, Nguyen Tien
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2009
  • Most of the current drainage criteria have been developed on the basis of experimental field results and theoretical analyses of infiltration under saturated conditions. The objective of this study is to extend the understanding of pavement drainage systems by considering unsaturated condition in the sublayers. Analyses of unsaturated flows through pavements was performed by running finite element program(SEEP/W) with a range of pavement materials and drainage parameters. Meanwhile, the widely used DRIP program developed by FHWA is based on assumption of saturated condition of pavements. Differences between saturated and unsaturated condition in the sublayers of the pavements are verified. It is verified that for unsaturated conditions time to drain would take longer time compared to saturated condition.

Analysis of Sloshing Problem by Numerical Method (수치기법을 이용한 Sloshing 문제의 해석)

  • Y.H. Kim;Y.J. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.33-44
    • /
    • 1992
  • In the present paper, three types of analytic and numerical method are applied to the analysis of sloshing problem. Analytic solution with linear free-surface boundary condition is introduced and numerical methods are used to analyze flued flow trapped in two-and three-dimensional tanks. Source-distribution method is applied to two- and three-dimensional rectangular tanks and sphere tank. Finite difference method is utilized to compute fluid motion and pressure evolution in two dimensional tanks with girders or slopes. Calculated results are compared with those of experiment or other numerical techniques.

  • PDF

Isogeometric Shape Design Optimization of Structural Systems Subjected to Design-dependent Loads (설계의존형 하중조건을 갖는 시스템의 아이소-지오메트릭 형상 최적설계)

  • Koo, Bon-Yong;Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.512-515
    • /
    • 2010
  • 본 논문에서는 등기하 해석법을 이용하여 설계의존형 하중조건을 갖는 구조물에 대한 형상 최적설계를 수행하였다. 유한요소법 기반 형상 최적설계는 CAD 모델과 해석 모델의 차이로 인해, 설계영역 매개변수화에 어려움이 있다. 등기하 해석법은 CAD 모델과 동일한 NURBS 기저 함수와 조정점을 해석에 이용함으로써 설계의 기하학적 변화를 해석모델에 직접적으로 표현할 수 있는 장점을 가진다. 하중조건이 설계 영역이 변화함에 따라 변하는 최적설계 문제의 경우, 정확한 설계 영역 표현은 법선 벡터, 즉 변화하는 하중의 방향과 곡률과 같은 고차항의 정보를 정확하게 표현할 수 있고, 따라서 목적함수를 최소 또는 최대화시키는 최적의 해로 이끌어 낸다. 유한요소법 또는 밀도법을 이용한 형상 최적설계에서 설계의존형 하중조건을 갖는 구조물의 문제를 푸는 경우, 최적설계가 진행됨에 있어 변화하는 경계의 부정확성 때문에 정확한 설계민감도를 얻기가 어려운 점이 있다. 본 논문에서는, 수치 예제를 통해 등기하 해석 기반의 형상 최적설계 방법론이 설계의존형 하중조건을 갖는 구조물 문제에서 수월성을 가짐을 확인하였다.

  • PDF

Innovative Transient Thermal Gradient Control to Prevent Early Aged Cracking of Massive Concrete (매스콘크리트의 열경사 조절에 의한 수화열과 온도균열의 방지)

  • Kim, Seong-Soo;Cho, Tae-Jun;Lee, Jeong-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.164-172
    • /
    • 2008
  • The heat of hydration for early aged mass concrete induces high temperature with the hydration. Control of the temperature difference across a section is an effective strategy to minimize the hydration heat induced cracks for the structures where internal restraint is dominant. The current prevention methods for hydration cracking show some limitations for the control of thermal gradients, and these limitations could make micro and macro cracks in surface and core of concrete. Especially cooling methods can decrease the increasing hydration temperature, but it can not prevent the problem while decreasing temperature. Consequently heating pipes are added simultaneously with the cooling pipes in order to control the temperature gradients between core and surface of the concrete, followed by the finite element analysis (FEA). Based on the FEA, the proposed method using cooling pipe and heating pipes together has been found to be an effective alternative in thermal gradient control, in terms of controlling temperature induced cracks significantly.