• Title/Summary/Keyword: 유한요소전달행렬법

Search Result 28, Processing Time 0.028 seconds

An Analysis of Continuous Beam by Material Non-linear Transfer Matrix Method (재료비선형 전달행렬법에 의한 연속보의 해석)

  • Seo, Hyun Su;Kim, Jin Sup;Kwon, Min Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.77-84
    • /
    • 2011
  • This study is to develop nonlinear analysis algorithm for transfer matrix method, which can be applied to continuous beam analysis. Gauss-Lobatto integral rule is adopted and the transfer matrix is derived from stiffness matrix. In the transfer matrix method, the system equation has a constant number of unknowns regardless of number of D.O.F. Therefore, the transfer matrix method has computational efficiencies not only in linear elastic analysis but also in nonlinear analysis. To verify the developed method, the analysis results of several examples are compared with commercial code in moment-curvature, moment-displacement and load-displacement relation.

An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix (전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석)

  • 남문희;하대환;이관희;장홍득
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 1997
  • Even though there are many analysis methods of circular tanks on elastic foundation, the finite element method is widely used for that purpose. But the finite element method requires a number of memory spaces, computation time to solve large stiffness equations. In this study many the simplified methods(Analogy of Beam on Elastic Foundation, Foundation Stiffness Matrix, Finite Element Method and Transfer Matrix Method) are applied to analyze a circular tank on elastic foundation. By the given analysis methods, BEF analogy and foundation matrix method, the circular tank was transformed into the skeletonized frame structure. The frame structure was divided into several finite elements. The stiffness matrix of a finite element is related with the transfer matrix of the element. Thus, the transfer matrix of each finite element utilized the transfer matrix method to simplify the analysis of the tank. There were no significant difference in the results of two methods, the finite element method and the transfer matrix method. The transfer method applied to a circular tank on elastic foundation resulted in four simultaneous equations to solve completely.

  • PDF

Influence Lines of a Portal Frame with Joint Translations by Transfer Matrix Method (전달행렬법에 의한 변위를 허용하는 문형라멘의 영향선해석)

  • 남문희;하대환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • 구조물설계에 있어서 영향선은 최대반력, 최대전단력, 최대휨모멘트 등을 계산하는데 아주 유용하게 사용된다. 모멘트분배법, 인도행렬법, 전달행렬법, 그리고 Muller-Breslau 원리에 의한 단순보와 연속보의 영향선은 잘 알려져 있고 또 교량공학에서 널리 사용되고 있다. 그러나 변위를 허용하는 특별한 구조물의 영향선을 계산할 경우에는 약간의 어려움이 있다. 이 연구에서는 절점변위를 허용하는 문형라멘의 영향선을 전달행렬법에 의하여 구하고 유한요소법에 의하여 얻은 영향선과 비교하였고 그 결과는 좋은 일치를 보이고 있다.

  • PDF

Numerical Analysis for Modeling of Sound Absorbing Medium using Transmission Line Matrix Modeling (전달선로행렬법을 이용한 흡음재 모델링에 대한 수치해석)

  • Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1599-1605
    • /
    • 2012
  • We introduced an approach of modeling of a sound absorbing medium that had different absorbing coefficient according to frequency. To obtain the time domain result of the frequency characteristics of a sound absorbing medium, transmission line matrix modeling was used. To input sound absorbing effect in TLM modeling, we added a FIR filter at a node instead of absorbing component using resistance component. There were simulated the characteristics of time-shift, low pass filter, high pass filter using the FIR filter with 7-tap coefficients, then compared with theoretical results. From various simulation results, we could find that added FIR filter coefficient in TLM modeling was an useful way to model a sound absorbing medium.

A Study on the Stiffness of Frustum-shaped Coil Spring (원추형 코일스프링의 강성에 대한 연구)

  • Lee, S.J.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.49-54
    • /
    • 2003
  • 스프링은 가장 널리 이용되어지고 있는 기계요소이다. 본 논문에서는 원추형 코일스프링의 강성을 구하기 위하여, 빔요소를 이용한 유한요소법을 사용하였다. 가상일의 법칙을 이용하였고, 코일스프링의 하중벡터를 압축 분포하중으로 대체하였다. 하중의 증가에 의한 절점에서의 변위는 유한요소법를 이용하여 계산하였다. 단계법으로 결점의 변위를 중첩하여 전체 강성행렬을 구하였다. 유한요소법에 의한 해석치는 실험치와 잘 일치하였다. 본 논문에서 제시한 프로그램을 사용하여, 스프링 강성과 응력을 예측할 수 있을 것으로 사료된다.

  • PDF

Forced Vibration Analysis of a Hollow Crankshaft by using Transfer Matrix Method and Finite Element Method (전달 행렬법과 유한요소법을 이용한 중공 크랭크축의 강제 진동 해석)

  • 김관주;최진욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.44-52
    • /
    • 1997
  • As part of the effort to reduce the weight of powertrain, a hollow crankshaft has been designed. The mass reduction of the crankshaft changes the dynamic properties of the crankshaft such as moment of inertia, and torsional, bending stiffness. The purpose of this paper is to compare the dynamic behavior of the hollow crankshaft with that of the original, solid crankshaft. Global dynamic behavior of the crankshaft is analyzed bgy the transfer matrix method(TMM). The crankshaft has been modeled by 38 lumped mass and stiffness elements. The dynamic patameters of each lumped element are provided by Finite Element Method(FEM). The responses of the crankshaft from TMM are fed back as loading conditions to the Finite Element model to obtain dynamic stresses for critical areas of the crankshaft.

  • PDF

벨트구동 선반 주축계의 진동해석에 관한 연구

  • 이영환;김우정;홍장표;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.615-618
    • /
    • 1996
  • 선반가공은 기계 가공의 기본이라고 할 수 있으며 최근의 선반은 자동화 등의 영향으로 그 구조면에서 많은 변화 를 보여주고있다. 그러나 기본적인 가공법에서는 큰 변화가 나타나지 않는데 이는 선반의 구조상 높은 정밀도를 얻기 힘들기 때문이다. 본 연구에서는 전달 행렬법과 유한 요소법의 장점을 결합하여 다축계의 진동 해석에 적용 가능한 새로운 해석 방법을 제시하고이를 이용하여 선반 주축과 구동축의 진동을 동시에 해석함으로써 주축의 성능을 예측 하고 그 개선 방안을 모색하고자 한다. 본 연구를 통하여 개발된 해석 방법을 적용할 경우 다양한 형태의 계에 대한 진동 해석이 가능하며 유한 요소법을 사용하였을 때에 비하여 계산 시간을 획기적으로줄일 수 있다.

  • PDF

Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures (관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석)

  • 홍석윤;강연식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • The transmission of vibration energy through beam-plate junctions in vibration intensity analysis called power new analysis (PFA) has been studied. PFA is an analytic tool for the prediction of frequency averaged vibration response of built-up structures at medium to high frequency ranges. The power transmission and reflection coefficients between the semi-infinite beam and plate are estimated using the wave transmission approach. For the application of the power coefficients to practical complex structures, the numerical methods, such as finite element method are needed to be adapted to the power flow governing equation. To solve the discontinuity of energy density at the joint, joint matrix is developed using energy flow coupling relationships at the beam-plate joint. Using the joint matrix developed in this paper, an idealized ship stem part is modeled with finite element program, and vibration energy density and intensity are calculated.

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

A Simple Analysis of the Cylindrical Shell Subjected to a Nonaxisymmetric Load (비축대칭 하중을 받는 원통형 쉘의 단순화 해석)

  • 남문희;이관희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2000
  • When one considers the property of the axisymmetry, an analysis of an axisymmetric shell subjected to unaxisymmetric loading can be employed to save time and computer memory space. If one considers the Fourier series of the circumference direction of loads and displacements, an axisymmetric tank subjected to a nonaxisymmetric load can be treated as a frame element. Using the Fourier series, the authors derived the stiffness matrix of the cylindrical shell subjected to unaxisymmetric loading by the usual finite element method, and converted the stiffness matrix of a frame element into a transfer matrix by rearranging the stiffness matrix to apply the transfer matrix method. Here the most significant purpose of this paper is to achieve the fewest number of simultaneous equations for analysing an axisymmetric shell subjected to a nonaxisymmetric load. The results of the proposed method of the analysis of the cylindrical shell subjected to a wind load and a water load show no differences when compared to the other methods.

  • PDF