• Title/Summary/Keyword: 유튜브 댓글

Search Result 35, Processing Time 0.021 seconds

The Differential Impacts of Positive and Negative Emotions on Travel-Related YouTube Video Engagement (유튜브 여행 동영상의 긍정적 감정과 부정적 감정이 사용자 참여에 미치는 영향)

  • Heejin Kim;Hayeon Song;Jinyoung Yoo;Sungchul Choi
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.1-19
    • /
    • 2023
  • Despite the growing importance of video-based social media content, such as vlogs, as a marketing tool in the travel industry, there is limited research on the characteristics that enhance engagement among potential travelers. This study explores the influence of emotional valence in YouTube travel content on viewer engagement, specifically likes and comments. We analyzed 4,619 travel-related YouTube videos from eight popular tourist cities. Using negative binomial regression analysis, we found that both positive and negative emotions significantly influence the number of likes received. Videos with higher positive emotions as well as negative emotions receive more likes. However, when it comes to the number of comments, only negative emotions showed a significant positive influence, while positive emotions had no significant impact. These findings offer valuable insights for marketers seeking to optimize engagement strategies on YouTube, considering the unique nature of travel products. Further research into the effects of specific emotions on engagement is warranted to improve marketing strategies. This study highlights the powerful impact of emotions on viewer engagement in the context of social media, particularly on YouTube.

Use of the 20th Presidential Election Issues on YouTube: A Case Study of 'Daejang-dong Development Project' (유튜브 이용자의 제20대 대통령선거 이슈 이용: '대장동 개발 사업' 사례를 중심으로)

  • Kim, Chunsik;Hong, Juhyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • There are three focuses in the paper. Firstly, the study identified what channels were most viewed by YouTube users to watch the 'Daejang-dong scandal,' which was the most powerful agenda to influence the candidate preference among voters during the 20th presidential election. Secondly, the study analyzed whether the political tone of the first videos was in line with that of the subsequent videos. Finally, we compared the sentiment of comments on the first and subsequent videos. The results showed that TBS 'News Factory' and 'TV Chosun News' represented liberal and conservative factions, respectively. Secondly, the political tone of channels that were viewed subsequently was neutral, but the conservative channel users left more negative comments and that was significant statistically. In addition, about 80% of the conservative and liberal channel users shared the same political tendency with the channel they watched first, and more than 90% of the comments left at the subsequent videos in line with that of at the first news. Based on these results, the study concluded that the voters tended to seek political news that was similar with their political ideology, and it was considered a sort of echo chamber phenomenon on the YouTube. The study suggests that the performance of high-quality journalism by traditional news outlet might contribute to decrease the negative influence of political contents on YouTube users.

Matching of Topic Words and Non-Sympathetic Types on YouTube Videos for Predicting Video Preference (영상 선호도 예측을 위한 유튜브 영상에 대한 토픽어와 비공감 유형 매칭)

  • Jung, Jimin;Kim, Seungjin;Lee, Dongyun;Kim, Gyotae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.189-192
    • /
    • 2021
  • YouTube, the world's largest video sharing platform, is loved by many users in that it provides numerous videos and makes it easy to get helpful information. However, the ratio of like/hate for each video varies according to the subject or upload time, even though they are in the same channel; thus, previous studies try to understand the reason by inspecting some numerical statistics such as the ratio and view count. They can help know how each video is preferred, but there is an explicit limitation to identifying the cause of such preference. Therefore, this study aims to determine the reason that affects the preference through matching between topic words extracted from comments in each video and non-sympathetic types defined in advance. Among the top 10 channels in the field of 'pets' and 'cooking', where outliers occur a lot, the top 10 videos (the threshold of pet: 4.000, the threshold of cooking: 0.723) with the highest ratio were selected. 11,110 comments collected totally, and topics were extracted and matched with non-sympathetic types. The experimental results confirmed that it is possible to predict whether the rate of like/hate would be high or which non-sympathetic type would be by analyzing the comments.

  • PDF

Influencer Attribute Analysis based Recommendation System (인플루언서 속성 분석 기반 추천 시스템)

  • Park, JeongReun;Park, Jiwon;Kim, Minwoo;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1321-1329
    • /
    • 2019
  • With the development of social information networks, the marketing methods are also changing in various ways. Unlike successful marketing methods based on existing celebrities and financial support, Influencer-based marketing is a big trend and very famous. In this paper, we first extract influencer features from more than 54 YouTube channels using the multi-dimensional qualitative analysis based on the meta information and comment data analysis of YouTube, model representative themes to maximize a personalized video satisfaction. Plus, the purpose of this study is to provide supplementary means for the successful promotion and marketing by creating and distributing videos of new items by referring to the existing Influencer features. For that we assume all comments of various videos for each channel as each document, TF-IDF (Term Frequency and Inverse Document Frequency) and LDA (Latent Dirichlet Allocation) algorithms are applied to maximize performance of the proposed scheme. Based on the performance evaluation, we proved the proposed scheme is better than other schemes.

Convergence of Korean Traditional Dance and K-Pop Dance : An Analysis of Comments on 2018 MMA BTS 'IDOL' Videos on YouTube (한국 전통춤과 K-pop 댄스의 융합 : 2018 MMA 방탄소년단 'IDOL' 유튜브 댓글 분석)

  • Yoo, Ji-Young;Kim, Mi-Kyung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.189-198
    • /
    • 2019
  • This study aims to make meaning of the reactions of the Korean people through the text mining of comments on videos of the December 2018 MMA performance of intro on YouTube. For this, comments on 15 YouTube videos were collected over the past 10 months. With the collected data, a total of 5,135 comments were analyzed through crawling using the Python and BeautifulSoup programs, data was refined over a total of 3 sessions, and a final total of 5,080 comments were used as analysis material. A mining technique was used for data analysis and the process of refinement, analysis, and visualization was achieved using the Textom program. Research results showed that keyword analysis showed the keywords of 'performance', 'Korea', 'video', 'top', 'cool', 'dance', 'idol', 'legend', 'love', and 'gratitude' in that order and keywords such as 'patriotism' and 'Olympics' also appeared frequently. N-gram analysis showed that comments with contexts such as 'a top performance that will remain a legend among Korean idol performances', and 'an idol performance that displayed the traditional culture of Korea' were in higher ranks. Based on such keyword analysis results, topic modeling was applied and 5 top keywords were extracted from a total of 5 topics. Analysis results of topic contents and distribution showed that topics in the comments of this performance's videos largely consisted of the 3 reactions of 'high praise regarding the stage performance', 'affection towards the fusion and artistic sublimation of Korean traditional dance', and 'gratitude towards the uploading of cool dance videos'

What Concerns Does ChatGPT Raise for Us?: An Analysis Centered on CTM (Correlated Topic Modeling) of YouTube Video News Comments (ChatGPT는 우리에게 어떤 우려를 초래하는가?: 유튜브 영상 뉴스 댓글의 CTM(Correlated Topic Modeling) 분석을 중심으로)

  • Song, Minho;Lee, Soobum
    • Informatization Policy
    • /
    • v.31 no.1
    • /
    • pp.3-31
    • /
    • 2024
  • This study aimed to examine public concerns in South Korea considering the country's unique context, triggered by the advent of generative artificial intelligence such as ChatGPT. To achieve this, comments from 102 YouTube video news related to ethical issues were collected using a Python scraper, and morphological analysis and preprocessing were carried out using Textom on 15,735 comments. These comments were then analyzed using a Correlated Topic Model (CTM). The analysis identified six primary topics within the comments: "Legal and Ethical Considerations"; "Intellectual Property and Technology"; "Technological Advancement and the Future of Humanity"; "Potential of AI in Information Processing"; "Emotional Intelligence and Ethical Regulations in AI"; and "Human Imitation."Structuring these topics based on a correlation coefficient value of over 10% revealed 3 main categories: "Legal and Ethical Considerations"; "Issues Related to Data Generation by ChatGPT (Intellectual Property and Technology, Potential of AI in Information Processing, and Human Imitation)"; and "Fear for the Future of Humanity (Technological Advancement and the Future of Humanity, Emotional Intelligence, and Ethical Regulations in AI)."The study confirmed the coexistence of various concerns along with the growing interest in generative AI like ChatGPT, including worries specific to the historical and social context of South Korea. These findings suggest the need for national-level efforts to ensure data fairness.

A Study on Perceptions of Virtual Influencers through YouTube Comments -Focusing on Positive and Negative Emotional Responses Toward Character Design- (유튜브 댓글을 통해 살펴본 버추얼 인플루언서에 대한 인식 연구 -캐릭터 디자인에 대한 긍부정 감성 반응을 중심으로-)

  • Hyosun An;Jiyoung Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.5
    • /
    • pp.873-890
    • /
    • 2023
  • This study analyzed users' emotional responses to VI character design through YouTube comments. The researchers applied text-mining to analyze 116,375 comments, focusing on terms related to character design and characteristics of VI. Using the BERT model in sentiment analysis, we classified comments into extremely negative, negative, neutral, positive, or extremely positive sentiments. Next, we conducted a co-occurrence frequency analysis on comments with extremely negative and extremely positive responses to examine the semantic relationships between character design and emotional characteristic terms. We also performed a content analysis of comments about Miquela and Shudu to analyze the perception differences regarding the two character designs. The results indicate that form elements (e.g., voice, face, and skin) and behavioral elements (e.g., speaking, interviewing, and reacting) are vital in eliciting users' emotional responses. Notably, in the negative responses, users focused on the humanization aspect of voice and the authenticity aspect of behavior in speaking, interviewing, and reacting. Furthermore, we found differences in the character design elements and characteristics that users expect based on the VI's field of activity. As a result, this study suggests applications to character design to accommodate these variations.

Network analysis of issue diffusion on the sanitary pad cancer-causing agent via Twitter and Youtube (트위터와 유튜브를 통해 확산된 생리대 발암물질 이슈에 대한 네트워크 분석)

  • Hong, Juhyun
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.15-26
    • /
    • 2018
  • This study focused on the difference of the volume of sanitory pad issue and The aim of this study is to explore the relationship between the characteristics of SNS and the diffusion of issue in the process of crisis issue. SNS is categorized into communication diffusion, communication restriction,, diffusion, restriction base on the media interactivity and the user interactivity, In case of Twitter, media interactivity is low and user interactivity is low. In case of Youtube, media interactivity and user interactivity are all high. Crisiss issue is interactively diffused via Youtube compared to via Twitter. There was a negative public opinion in social media even if the government and the manufacturer said that there was no harm in the sanitary goods. In conclusion, this study highlights the importance of social media environment in the diffusion of information. The government prepared for the use of SNS in crisis because there was a negative opinion on the government and the manufacturer via SNS.

Natural language sensitivity analysis using RNN (순환신경망(RNN)을 통한 자연어 감성 분석)

  • Hur Tai-sung;Jeon Se Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.473-474
    • /
    • 2023
  • 본 논문에서는 딥러닝 기법 중 하나인 순환신경망(RNN)을 활용하여 자연어를 처리할 수 있는 모델 개발에 대하여 연구를 진행하였다. 다양한 주제에 대한 사용자들의 의견을 확보할 수 있는 유튜브 플랫픔을 활용하여 데이터를 확보하였으며, 감성 분류를 진행하는 만큼 학습 데이터셋으로는 네이버 영화 리뷰 데이터셋을 활용하였다. 사용자는 직접 데이터 파일을 삽입하거나 혹은 유튜브 댓글과 같이 데이터를 외부에서 확보하여 감성을 분석할 수 있으며, 자연어 속 등장하는 단어의 빈도수를 종합하여 해당 데이터들 속 키워드는 무엇인지를 분석할 수 있도록 하였다. 나아가 종합 데이터 분석 관리 플랫폼을 제작하기 위하여 해당 데이터를 데이터베이스에 저장하고GUI 프로그램을 통하여 접근 및 관리가 가능하도록 하였다.

  • PDF

YouTube Channel Ranking Scheme based on Hidden Qualitative Information Analysis (유튜브 은닉 질적 정보 분석 기반 유튜브 채널 랭킹 기법)

  • Lee, Ji Hyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.757-763
    • /
    • 2019
  • Youtube has become so popular that it is called the age of YouTube. As the number of users and contents increase, the choice of information increases. However, it is difficult to select information that meets the needs of users. YouTube provides recommendations based on their watch list. Therefore, in this study, we want to analyze the channel of user's subject in various angles and provide the proposed scheme based on the crawled channels, measurement of the perception of channels and channel videos through quantitative data and hidden qualitative data analysis. Based on the above two data analysis, it is possible to know the recognition of the channel and the recognition of the channel video, thereby providing a ranking of the channels that deal with the topic. Finally, as a case study, we recommend English learning channels to users based on numerical data statistics and emotional analysis results to maximize flipped learning effect regardless of time and space.