• Title/Summary/Keyword: 유출계수

Search Result 778, Processing Time 0.028 seconds

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

A Study on Development of Evaluation Indicator for Golf Course User's Preference (골프장 이용자 선호도 평가지표 개발)

  • Seok, Young-Han;Moon, Seok-Ki;Lee, Eun-Yeob
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.25-34
    • /
    • 2010
  • This study was conducted to develop evaluation indicators to improve athletic performance and operational management of golf courses and the results of the research are as follows. Through theoretical research and a preliminary professional survey, 15 on-going evaluations of golf course composition and operational management and 55 sub-evaluation indices were rejected while 10 on-going evaluations and 52 sub-evaluation indicators were reconfigured as final for environmental-friendliness, level of member services, level of human service of game personnel, difficulties of course, management level of the course, fairness of operational management, accessibility and location characteristic, traditions and ambiance of the golf club, quality of course, and course layout. When analyzing the important decision factors in golf course user preference evaluation indicators, the following contributed in the order of higher to lower contributions: the management level of the course, excellence of the course, level of human services for personnel, course layout and environmental-friendliness. When identifying the path coefficient of golf course evaluation indicators, the curvature of a hole and the length of the course had a causal effect on the 'course layout' section. Tournament facilities and various shot values had a causal relationship with 'excellence of the course', in the order of higher to lower, and convenience of waiting and fair allocation of reservations for 'fairness of operational management'. The history of the golf course and its environmental characteristics, history and culture of the region have relatively higher causal effects on 'traditions of the golf club' and geographical conditions on 'accessibility and location characteristics', pesticide and fertilizer usage and water pollution on 'environmental-friendliness', and member benefit and kindness of employees on 'level of member services'. The kindness and expertise of the game personnel had a relatively higher causal effect on the 'level of human services of game personnel', the location of tenning area, and location of OB and hazards on 'difficulties of course', and rough conditions and obstacles management on 'management level of the course'. There is a need to complete a systematic evaluation index system for golf course user preferences through future studies for a more detailed assessment, as well as a process to verify these evaluation indicators by application to domestic and international golf courses.

Landscape Changes of the Mujechi Moor, Mt. Jungjok (정족산 무제치늪의 경관발달)

  • 유호상;공우석
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.101-109
    • /
    • 2001
  • The landscape changes at the Mujechi moors I and II during the last twenty two years were analysed using a tree ring analysis of pine trees, a distributional pattern of pine tree, an aerial photograph interpretation and a measurement of firebreak line. The analysis of aerial photographs(taken in 1978, 1988, 1998) indicates that the area of Mujechi moors I and II have gradually decreased. The decreased rate of moor area was relatively high, i.e.,-23.9 %(1978~1988) and -16.4 %(1998~1998) at the Mujechi moor I, but a little bit low, i.e., -2.6% (1978~1988) and -12.6 % (1998~1998) at the Mujechi moor II. However, dendrochronological analysis of pine trees at moors I and II shows that the appearance rates of pine trees per $100\textrm{m}^2$ at moor I and II were 0.28 and 0.57 respectively. And the number of younger pine trees(height is under 1.5m, DBH is less than 2.5 cm) invaded into moors are numbered eleven at the moor I, and ten at the moor II. This shows that the shift of a wetlands into a land was faster at the moor II than the moor I. The construction of a firebreak line and waterway along the moors I and II areas since the December, 1995, has diverted watershed flow and prohibited the runoff flow into the moors. The analysis of GIS suggests that the decreased watershed area were about $11,413.8\textrm{m}^2$(12.1 % of whole watershed area) at the moor I and $15,969.5\textrm{m}^2$(40.4 % of whole watershed area) at the moor II. The negative impact of firebreak line on the inflow of water into the moors I and II and destruction of vegetation along the firebreak line are noticeable from the field survey.

  • PDF

The Physiochemical Characteristics of Seawater and Sediment of Marine Shellfish Farm in Jindong Bay (진동만 패류양식해역의 환경특성)

  • Jeong, Woo-Geon;Cho, Sang-Man
    • The Korean Journal of Malacology
    • /
    • v.19 no.2
    • /
    • pp.161-169
    • /
    • 2003
  • Seawater and sediment quality analysed was calculated to examinate the present environmental characteristics and pollution load was also calculated to evaluate the effect of farming area on the coastal environment. The measurements for seawater quality demonstrate the coastal environment has relatively eutrophicated with significantly decreased DO (0.2-8.5 mg/l) and elevated COD (9.6-31.2 mg/l) in summer. It was also evident that the water quality in Jindong Bay has been influenced by residues tide from Masan Bay with high metal concentration in August of 2002. Annual total pollution load (land and farm-driven) was estimated at 37,316 ton (SS) /yr: 9,809 ton/yr (26.3%) of land-driven load, 23,576 ton/yr (63.2%) of coastal sedimentation and 3,932 ton/yr (10.5%) of feces of cultural organisms. When all ark shell seedling farms are permitted species conversion to ascidian farm, the pollution load would increase by 196%, which may be another source for accelerating the eutrophication of the environment in Jindong Bay.

  • PDF

Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test (불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.

Modification of WASP5 for Ungauged Watershed Management and Its Application (미계측 유역관리를 위한 WASP5 모형의 개선 및 적용성 검토)

  • Kim, Jin-Ho;Shin, Dong-Suk;Kwun, Soon-Kuk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • This study was carried out to develop a water quality simulation model for the evaluation of an ungauged watershed. For this purpose, the WASP5 model was selected and modified. The model consists of three sub-models, LOAD-M, DYN-M, and EUT-M. LOAD-M, an empirical model, estimates runoff loadings using point and non-point source data of villages. The Geum River Estuary watershed was selected to calibrate and verify the Modified-WASP5. The LOAD-M model was established using field data of water quality and quantity at the gauging stations of the watershed and was applied to the ungauged watersheds, taking the watershed properties into consideration. The result of water quality simulation using Modified-WASP5 shows that the observed average BOD data from Gongju and Ganggyeong were 2.6 mg/L and 2.8 mg/L, and the simulated data were 2.5 mg/L and 2.4 mg/L, respectively. Generally, simulation results were in good agreement with the observed data. This study focused on formulating an integrated model for evaluating ungauged watersheds. Even though simulation results varied slightly due to limited availability of data, the model developed in this study would be a useful tool for the assessment and management of ungauged watersheds.

Flood Risk Estimation Using Regional Regression Analysis (지역회귀분석을 이용한 홍수피해위험도 산정)

  • Jang, Ock-Jae;Kim, Young-Oh
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2009
  • Although desire for living without hazardous damages grows these days, threats from natural disasters which we are currently exposed to are quiet different from what we have experienced. To cope with this changing situation, it is necessary to assess the characteristics of the natural disasters. Therefore, the main purpose of this research is to suggest a methodology to estimate the potential property loss and assess the flood risk using a regional regression analysis. Since the flood damage mainly consists of loss of lives and property damages, it is reasonable to express the results of a flood risk assessment with the loss of lives and the property damages that are vulnerable to flood. The regional regression analysis has been commonly used to find relationships between regional characteristics of a watershed and parameters of rainfall-runoff models or probability distribution models. In our research, however, this model is applied to estimate the potential flood damage as follows; 1) a nonlinear model between the flood damage and the hourly rainfall is found in gauged regions which have sufficient damage and rainfall data, and 2) a regression model is developed from the relationship between the coefficients of the nonlinear models and socio-economic indicators in the gauged regions. This method enables us to quantitatively analyze the impact of the regional indicators on the flood damage and to estimate the damage through the application of the regional regression model to ungauged regions which do not have sufficient data. Moreover the flood risk map is developed by Flood Vulnerability Index (FVI) which is equal to the ratio of the estimated flood damage to the total regional property. Comparing the results of this research with Potential Flood Damage (PFD) reported in the Long-term Korea National Water Resources Plan, the exports' mistaken opinions could affect the weighting procedure of PFD, but the proposed approach based on the regional regression would overcome the drawback of PFD. It was found that FVI is highly correlated with the past damage, while PFD does not reflect the regional vulnerabilities.

Water shortage assessment by applying future climate change for boryeong dam using SWAT (SWAT을 이용한 기후변화에 따른 보령댐의 물부족 평가)

  • Kim, Won Jin;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1195-1205
    • /
    • 2018
  • In the study, the water shortage of Boryeong Dam watershed ($163.6km^2$) was evaluated under future climate change scenario. The Soil and Water Assessment Tool (SWAT) was used considering future dam release derived from multiple linear regression (MLR) analysis. The SWAT was calibrated and verified by using daily observed dam inflow and storage for 12 years (2005 to 2016) with average Nash-Sutcliffe efficiency of 0.59 and 0.91 respectively. The monthly dam release by 12 years MLR showed coefficient of determination ($R^2$) of above 0.57. Among the 27 RCP 4.5 scenarios and 26 RCP 8.5 scenarios of GCM (General Circulation Model), the RCP 8.5 BCC-CSM1-1-M scenario was selected as future extreme drought scenario by analyzing SPI severity, duration, and the longest dry period. The scenario showed -23.6% change of yearly dam storage, and big changes of -34.0% and -24.1% for spring and winter dam storage during 2037~2047 period comparing with 2007~2016 period. Based on Runs theory of analyzing severity and magnitude, the future frequency of 5 to 10 years increased from 3 in 2007~2016 to 5 in 2037~2046 period. When considering the future shortened water shortage return period and the big decreases of winter and spring dam storage, a new dam operation rule from autumn is necessary for future possible water shortage condition.