• Title/Summary/Keyword: 유체 윤활

Search Result 239, Processing Time 0.025 seconds

A Study on Thermohydrodynamic Turbulent Lubrication of High Speed Journal Bearing Considering Various Thermal Conditions on Walls (다양한 열전달 경계조건을 고려한 고속 저어널 베어링의 난류 열유체 윤활 연구)

  • 전상명;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.93-98
    • /
    • 2000
  • Turbulence on the journal bearing operation is examined. And the thermal variability is studied for isothermal, convective and adiabatic conditions on the walls within some degree of journal misalignment. An efficient algorithm for the solution of the coupled turbulent Reynolds and energy equations is used to examine the effects of the various factors. The calculation data of turbulent analysis are compared with the ones of laminar analysis. Heat convection is found to play but a small role in determining friction and load. The friction distribution patterns through inside a journal bearing now appear different with high values at the front part of the bearing due to the high speed and low temperature, and a sudden decrease past the pressure maximum.

  • PDF

The Influence of Surface Roughness on Thermohydrodynamic Analysis (열유체 윤활해석에 의한 표면 거칠기가 마찰거동에 미치는 영향 고찰)

  • Kim, Joon-Hyun;Kim, Seong-Keol;Kim, Joo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.299-304
    • /
    • 2001
  • An approach is developed for parametric investigation of the influence of the surface roughness on thermohydrodynamic analysis with film conditions which systemically occur in journal bearings. A parametric investigation is performed for predicting the bearing behaviors such as pressure and temperature distributions in lubricating films between the stationary and moving surfaces determined by absorbed layers and interfaces on the statistical method for rough surface with Gaussian distribution. The layers expressing the effects of surface roughness are expressed as functions of the standard deviations (${\sigma}$) of each surface and surface orientation (j) to explain the flow patterns between both rough surfaces. The coupled effect of surface roughness and shear zone dependency on hydrodynamic pressure and temperature has been found by solving the present model in non-contact mode and contact mode, respectively.

  • PDF

Thermohydrodynamic Lubrication Analysis of Turbocharger Journal Bearing Involving the Mixture of Water within Engine Oil (엔진오일에 물이 혼합될 때 터보챠져 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.131-140
    • /
    • 2012
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non- Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a turbocharger lubricated with the mixture of two Newtonian fluid, for example, water within engine oil. The results related with the bearing performance are shown that the bearing friction is to decrease and the side leakage and bearing load increase as increasing the water content in an engine oil.

Elastohydrodynamic Lubrication Analysis on the Contacting Surfaces between Spur Gear Teeth (스퍼 기어 치면 사이의 탄성유체 윤활해석)

  • Kim, Hyung-Ja;Kim, Young-Dae;Koo, Young-Pil
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.200-206
    • /
    • 2002
  • Pressure and film thickness of contacting surfaces between teeth of the involute spur gear in lubricated condition were studied by a numerical method. Dynamics of the gear and pinion was considered to gel ail accurate initial clearance between gear teeth. The 3-dimensional non-steady elastohydrodanamic lubrication analysis on the gear teeth showed a slight higher pressure at the inlet region of the contacting face as well as pressure spike at the outlet region and a more thick film thickness than that of steady condition.

  • PDF

A Study on the Characteristics of Sound Source of Hydrodynamic proceeding Bearings (유체 윤활 저널베어링의 음원 특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.156-161
    • /
    • 2002
  • Results of theoretical investigations on acoustical properties of hydrodynamic proceeding bearings are presented. Nonlinear analysis of rotor bearing system including rotor imbalance is performed in order to obtain acoustical properties of hydrodynamic proceeding bearings. Furthermore, a cavitation algorithm, implementing the Jakobsson-Floberg-Olsson boundary condition, is adopted to predict cavitation regions in a fluid film. Acoustical properties of hydrodynamic proceeding bearings are identified through frequency analysis of pressure fluctuation calculated from the nonlinear transient analysis. The results show that the acoustical frequency spectra of hydrodynamic proceeding bearings are pure tone spectra, containing the frequency of the shaft rotation and its super-harmonics. The analysis also shows that the super-harmonics are predominant at neighborhood of the fluid film reformation and rupture regions.

  • PDF

Friction Force Measurement of Elastohydrodynamic Lubrication with Viscosity Index Improvers (탄성유체윤활 영역에서 점도지수 향상제의 첨가량에 따른 마찰력 측정연구)

  • Kong, Hyun-Sang;Jang, Si-Youl;Park, Kyoung-Kuhn
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.267-271
    • /
    • 2002
  • Most studies of elsatohydrodynamic lubrication are oriented only to the measurement of film thickness itself with optical interferometer. In order to exactly investigate the characteristics of a certain lubricant, it is also important to get the information of traction force as well. In this work, we developed the device for measuring friction force of ehl contact condition together with the film thickness. To verify the validity of the measuring system, the friction force and film thickness under ehl condition are measured with the variation of additive ratios of viscosity index Improvers.

  • PDF

Study on Bearing Performance Involving the Mixture of Water within Engine Oil in a Turbocharger Journal Bearing (터보챠저 저어널 베어링에서 물과 윤활유가 혼합될 때 베어링 성능에 관한 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.183-192
    • /
    • 2011
  • In this study, using the governing equations for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water dispersed within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing on a turbocharger lubricated with the mixture of two Newtonian fluids, water dispersed within engine oil. The results related with the bearing performance are showed that the friction force and bearing load capacity decrease as increasing the volume percent of water.

Subsurface stress field beneath the cam-roller contact surface under elastohydrodynamic lubrication and tangential loading (탄성유체윤활 및 접선하중 상태에서 캠-롤러 접촉표면의 내부 응력장)

  • Kim Hyung-Ja;Kim Young-Dae;Park Kyung-Dong;Koo Young-Pil
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.261-268
    • /
    • 2004
  • For cam and roller-follower contacting surfaces, the effect of tangential loading on the subsurface stress field at an elaso-hydrodynamic lubrication condition has been studied numerically. As tangential load increases, the subsurface stress field extended more widely to the direction of the tangential load. The positions of the maximum shear stress and the maximum effective stress are getting closer to the surface with the increasing tangential load. The tangential load at the elasto-hydrodynamic lubrication condition is of little consequence to the subsurface stress field.

  • PDF

An Elastohydrodynamic Lubrication of Elliptical Contacts Part I: Direction of Lubricant Entrainment Coincident with the Major Axis of the Hertzian Contact Ellipse (타원접촉의 탄성유체윤활 제1보-윤활유의 유입방향이 Hertz 접촉타원의 장축방향인 경우)

  • 박태조;현준수
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 1998
  • This paper presents a study of the elastohydrodynamic lubrication of elliptical contacts where lubricant entrainment coincides with the major axis of the Hertzian contact ellipse. A finite difference method and the Newton-Raphson method are applied to analyze the problem. Film contours and pressure distributions are compared with the results for lubricant entrainment coincides with the minor axis. Variations of the minimum and central film thicknesses with the radius ratio are also examined. The results showed that the present numerical scheme can be used generally in the analysis of the EHL of elliptical contacts where the lubricant entraining vector did not coincide with either of the principal axis of the conjunction.

Development of Piston-Ring Assembly Friction Force Measuring System (피스톤-링 결합체 마찰력 측정시스템의 개발)

  • 윤정의;김승수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.94-104
    • /
    • 1994
  • In order to improve engine performance and its reliability it is very important to find the friction force between piston-ring assembly and cylinder wall in engine operating conditions. A new system was developed for the piston-ring assembly friction force measurement. This system had a relatively high fundamental frequency at 884 Hz and a fine resolution of 0.5N in friction force measurement. Comparing with existing floating liner systems this systems required small installation space and at the same time alleviated the system noise problem induced by the thrust and slap impulse forces.

  • PDF