• Title/Summary/Keyword: 유체 유기 진동

Search Result 33, Processing Time 0.02 seconds

Experimental Analysis of Flow Induced Vibration Measurement Using Fiber Optic Sensor (광섬유 센서를 이용한 유체유기진동의 실험적 측정 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.274-286
    • /
    • 2009
  • Fiber optic sensor is widely used in measuring acoustic and vibration. Especially interferometric sensors are more suitable to measure the acoustic signal. In this paper, a Fabry-Perot interferometric fiber optic sensor was used to measure flow induced vibration. This vibration also measured using an accelerometer, and the data was compared to one other. The venture, nozzle, drop barrel, and rapid expansion in the pipeline are the measuring objects. The flow rate is changed from 50 L/min to 150 L/min and the average flow velocity was about 7 m/s. Based on the experimental results the suggested fiber optic sensor detects flow induced vibration effectively. Therefore, this kind of fiber optic sensor can be applied to the monitoring the flow induced noise and vibration such as pipelines, cables, buildings.

Experimental Study on the Flow-Induced Vibration of Inclined Circular Cylinders in Uniform Flow (균일 유동장내에서의 경사진 원형실린더의 유동유기진동 특성연구)

  • Chung, Tae-Young;Hong, Sup;Moon, Seok-Jun;Ham, Il-Bae;Lee, Hun-Gon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.265-270
    • /
    • 1994
  • 본 연구에서는 케비테이션 터널에서의 경사진 원형실린더의 유동유기진동시험을 통하여 경사각에 따른 유동유기진동 특성규명과 아울러 유체력 계수들의 실험적 산정을 시도하였으며 도출된 주요한 결론은 다음과 같다. 경사각이 20.deg. 이상되면 마찰저항력에 비해 수직항력이 지배적이 되며, 이때 수직항력계수는 여러 관찰자에 의해 관측된 범위의 값(1.7-2.0)을 갖는다. 또한, 양력계수 $C_{L,rms}$은 유속범위 4$_{n}$D<8의 범위에서 lock-in 현상에 의해 큰 값을 갖게 되며, 경사각이 커질수록 큰 값을 갖는다. 경사각이 30.deg.인 경우 최대값은 약 0.9, 20.deg.인 경우 0.4로 계측되었다.

  • PDF

Estimation of Flow-induced Vibration characteristics on Plugged Steam Generator (관막음된 증기발생기 전열관의 유체유발진동 특성 평가)

  • Cho, Bong-Ho;Ryu, Ki-Wahn;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.921-926
    • /
    • 2002
  • In this study, we investigate the plugging effect on the CE type steam generator tube. The natural frequency and mode shape will be changed due to decrease of the effective mass distribution along the tube. We compared the variation of stability ratio for plugged tube with that for unplugged one. The natural frequency increased because of removing the cooling water inside the steam generator tube, but the stability ratio decreased inversely because of changing the vibrational model shape. We also investigated the turbulent excitation effect.

  • PDF

Vortex-Induced Vibration of Flexible Cylinders Having Different Mass Ratios (원통형 부재의 질량비에 따른 와유기진동 특성연구)

  • Tae-Young Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 1991
  • A series of experiments were performed to see the dependence of the response characteristics of vortex-induced vibration of flexible cylinders on mass rations for marine applications. Experiments were conducted in the $60cm{\times}60cm$ test section of the cavitation tunnel at the Korea Research Institute of Ships and Ocean Engineering using 5 test rods of 60cm length and 6mm diameter with different mass ratios. It was confirmed quantitatively from the experiments that the low mass ratio cylinders have much broader flow velocity range of large amplitude vibrations than high mass ratio ones.

  • PDF

Study on the Fluid-elastic Instability and Turbulence Excitation for the Steam Generator Tube (증기발생기 전열관의 유체탄성불안정성 및 난류가진 특성 연구)

  • 유기완;박치용;박수기;이종호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1400-1405
    • /
    • 2001
  • In this study, an analysis program to assess the susceptibility of steam generator tubes due to the flow-induced vibration was developed. Analysis of fluid-elastic instability and random turbulence excitation for the U-tube bundle in CE-type steam generator was accomplished. The effective mass distribution along the U-tube was obtained to calculate the natural frequency and dynamic mode shape. Finally, stability ratios and rms vibration amplitude for selected tubes are obtained.

  • PDF

VORTEX-INDUCED VIBRATION SIMULATION OF MULTIPLE CIRCULAR CYLINDERS IN LOW REYNOLDS NUMBER FLOWS USING CARTESIAN MESHES (직교 격자를 이용한 저 레이놀즈 수 유동장내 다중 배치된 실린더의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.73-82
    • /
    • 2011
  • In this paper, the vortex-induced vibration of circular cylinders is studied using the immersed boundary method on the Cartesian mesh. The Reynolds numbers considered is from 100 to 200. Using the configuration of tendemly arranged multiple circular cylinders, the vortex shedding behind of the cylinders and their flow-induced motion are investigated. The staggered MAC grid arrangement, which is the typical grid system for the incompressible flow on the Cartesian meshes, is utilized. Pressure correction method is applied for solving the divergence-free incompressible velocity field. The body motion is described by immersed boundary technique that has advantages for moving object on the fixed computational domain. It is also discussed for the computational noise in hydrodynamic forces when body motion is represented by the immersed boundary method. The Predictor/Corrector method is used for simulating the nonlinear response of the elastically mounted cylinder excited by vortex-shedding.

Active Control of Flow-Induced Vibration Using Piezoelectric Actuators (압전 작동기를 이용한 유체 유기 진동의 능동 제어)

  • 한재홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF

Characteristics of Flow-induced Vibration for CE Type Steam Generator Tube with Various Column and Row Number (CE형 증기발생기 전열관의 행열 변화에 따른 유체유발진동 특성)

  • Ryu, Ki-Wahn;Cho, Bong-Ho;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.927-932
    • /
    • 2002
  • The stability ratio and vibrational amplitude of each tube inside a steam generator have different values. We estimate the characteristics of flow-induced vibration for CE type steam generator with various column and row number of the tube. To obtain the thermal-hydraulic data and stability ratio we use the ATHOS3-MODI and PIAT-FEI/TE code respectively. It turns out that the steam generator has a bounded central zone with the distributed values of the stability ratio and the vibrational amplitude, and those values across the zone boundary become decreased.

  • PDF

Numerical Analysis of Hydrodynamic mass for various Tube Arrays in a circular cylindrical shell (원통 내부의 전열관 배열에 따른 유체부가질량특성 수치해석)

  • Yang, Keum-Hee;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.693-699
    • /
    • 2011
  • The outermost SG tubes have more structural problems than inside tubes. Many studies have used a uniform added mass coefficient for all of the SG tubes during the FIV analysis. The purpose of this study is to find out the added mass coefficients for each tube in a cylindrical shell. When a number of tubes are increased, added mass coefficients are also increased. And added mass coefficients at outermost tubes are less than those of inside tubes. According to gap changes between outermost tube and cylindrical shell, added mass coefficients are decreased with increasing the gap. When the gap has very large value, it shows that the added mass coefficient is asymptotically converged to the value of the tube array in a free fluid field.

  • PDF

Numerical Analysis of Added Mass Coefficient for Outer Tubes of Tube Bundle in a Circular Cylindrical Shell (원통 내부에 배열된 외곽 전열관의 유체 부가질량계수 해석)

  • Yang, Keum-Hee;Ryu, Ki-Wahn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.203-209
    • /
    • 2016
  • According to the wear detection history for the steam generator tubes in the nuclear power plant, the outer tubes inside the steam generator have more problems on the flow-induced vibration than inner tubes. Many researchers and engineers have used a specified added mass coefficient for a given tube array during the design stage of the steam generator even though the coefficient is not constant for entire tube in cylindrical shell. The aim of this study is to find out the distribution of added mass coefficients for each tube along the radial location. When numbers of tubes inside a cylindrical shell are increased, values of added mass coefficients are also increased. Added mass coefficients at outer tubes are less than those of inner tubes and they are decreased with increasing the gap between the outermost tube and the cylindrical shell. It also turns out when the gap between the outermost tube and the cylindrical shell approaches infinite value, the added mass coefficient converges to an asymptotic value of given tube array in a free fluid field.