• 제목/요약/키워드: 유체로 연성된

Search Result 270, Processing Time 0.022 seconds

Effect of Check Valve Characteristics on Flow Rate of the Small Piezoelectric-Hydraulic Pump (체크밸브 특성이 소형 압전유압펌프 유량에 미치는 효과)

  • Nguyen, Anh Phuc;Hwang, Jai-Hyuk;Hwang, Yong-Ha;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.54-68
    • /
    • 2018
  • The objective of this study is to analyze the effect of dynamic characteristics of the check valve applied to the small piezoelectric-hydraulic pumps on flow rate formation. The flow rate of the piezoelectric-hydraulic pump is a key factor in the formation of the load pressure to operate the brake system. At this time, the natural frequency of the check valve operating in the fluid has a great influence on the formulation of the flow rate of the piezoelectric-hydraulic pump. In addition, the natural frequency of the check valve is affected by the gap between the check valve and the pump seat. In this study, the natural frequency of the check valve according to the gap between the check valve and the pump seat was calculated through the fluid-structure interaction analysis. The flow rate obtained from the simulation result was verified by comparing it with the result from the flow rate experiment using the developed piezoelectric-hydraulic pump.

Crashworthy Safety Assessment of High Speed Passenger Ship with Underwater Floating Matter (쾌속여객선의 수중부유물과의 내충돌 안전성 평가)

  • Lee, Sang-Gab;Lee, Jae-Seok;Baek, Yun-Hwa;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.30-31
    • /
    • 2009
  • Through the full scale ship collision response analysis of high speed passenger ship with underwater floating matters, the objective of this study is to perform the crashworthy safety assessment of its hull and passengers. For this safety assessment, diverse collision scenarios could be established through the thorough understanding of damage mechanisms due to the collision of its hydrofoil system with underwater floating matter examining the damage informations of its hull and passengers from the collision accidents, and through the estimation of the damages of its hull and passenger. The next step, crashworthy safety assessment of its hull and passengers, was carried out by the collision response analyses of high speed passenger ship with underwater floating matter using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code in consideration of surrounding water, and using local zooming analysis technique.

  • PDF

A Study on Wave Propagation in Drilling Boreholes at Low Frequencies (석유시추공에서의 저주파음향의 전달에 관한 연구)

  • H.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.84-92
    • /
    • 1995
  • To understand how low-frequency sound waves propagate axially in drilling boreholes, the propagation modes and speeds including the effect of interaction among layers are obtained by analyzing an infinitely-long, uniform, and cylindrically multi-layered waveguide which is consisted of fluid layers and solid layers. Assuming low frequency(wave length considered is very long compared to the borehole diameter), axisymmetry, non-viscosity, and etc., analytical solutions are obtained. Also, sound reflection due to the changes in the cross section is analyzed. Results for typical drilling boreholes show the usefulness of the method developed in this research, and are compared with FEM results showing good agreements.

  • PDF

An Analysis of the Flow Characteristics and Deformation of a Multileaf Foil Bearing by Using the Fluid/structure Interaction Method (유동/구조 연성해석기법을 이용한 Foil Bearing의 변형 및 유동 특성 해석)

  • Kim Y.;Hur N.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.607-610
    • /
    • 2002
  • As machines become smaller and faster multileaf foil bearings are used to overcome the problems with heat, friction and wear Systems with foil bearings do not need a separate system for lubrication. These bearings are self acting and are therefore green systems. Until now, there have been many studies on the structural and dynamical performances. Therefore the object of the present study is to predict the flow and structural characteristics by using the Fluid/structure interaction method. The increase in RPM led to the increase in pressure, temperature difference, maximum velocity, Mach number, shear stress and torque. In the case of 90,000 RPM effects such as choking led to a non-lineararity in the system. Also the effect of eccentricity ratio was observed and showed that eccentricity increased the maximum pressure and the density difference while decreasing the shear stress and torque.

  • PDF

The Natural Frequency of a Coaxial Cylindrical Shell with Fluid Coupling (유체 연성이 작용하는 동축 원통형 쉘의 고유진동)

  • 안병준;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.975-979
    • /
    • 1994
  • The experimental and finite element studies of a coaxial cylindrical shell filled with liquid in the annular gap were performed to understand its vibration characteristics. Finite element analysis was achieved by using ANSYS code. Form the investigation of the changing trend of natural frequencies for the change of annular gap we know that the natural frequency of the coaxial cylindrical shell varies according to the mode shape. that is, in case of in-phase mode the natural frequency decrease as annular gap increase, but in case of out-of-phase mode the natural frequency increase. Finite element analysis results show the excellent agreement with the experimental results both in air and in water case, so that analysis on other cases with be possible without experiment.

  • PDF

Vibration Reduction of Vertical Pumps Used in the Power Plant Circulating Water System (발전소 순환수계통 수직펌프의 진동저감에 관한 연구)

  • Park, Hyeok;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.9 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • In this study, the natural frequency of the actual operating vertical pump in the P combined cycle power plant is measured and the cause of high vibration is determined by using fluid-structure coupled vibration theory. Choosing the vibration reduction plan suited for field conditions and using the numerical analysis verify effectiveness of the plan. The plan is applied to the actual pump and the empirical experiments are conducted.

  • PDF

Analysis of gas flow and thermal deformation in a muffler (머플러의 유체 유동 및 연성 변형 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • Car muffler has the role to form the exhaust gas from high temperature- pressure to lower level and reduce the generated noise. Because of this role, its durability decrease as deformation by heat is occurred. This study is to analyze the flow of exhaust gas inside muffler and its coupled thermal deformation with 3-D modeling and ANSYS. There is the fastest flow at the exit of muffler with the maximum velocity of 54 m/s. And the maximum deformation or equivalent stress is shown at this model respectively as 0.00435 mm or 3414.4 MPa by the influence of heat and pressure at part of intersection with inlet and body of muffler.

FLUID-BODY INTERACTION ANALYSIS OF FLOATING BODY IN THREE DIMENSIONS (3차원 부유체의 유체-물체 연성해석)

  • Go, G.S.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fluid-body interaction analysis of floating body with six degree-of-freedom motion is presented. In this study, three-dimensional incompressible Navier-Stokes equations are employed as a governing equation. The numerical method is based on a finite-volume approach on a cartesian grid together with a fractional-step method. To represent the body motion, the immersed boundary method for direct forcing is employed. In order to simulate the coupled six degree-of-freedom motion, Euler's equations based on rigid body dynamics are utilized. To represent the complex body shape, level-set based algorithm is utilized. In order to describe the free surface motion, the volume of fluid method utilizing the tangent of hyperbola for interface capturing scheme is employed. This study showed three different continuums(air, water and body) are simultaneously simulated by newly developed code. To demonstrate the applicability of the current approach, two different problems(dam-breaking with stationary obstacle and water entry) are simulated and all results are validated.

Dynamic Behavior Analysis of Stiffened Cylindrical Shell Filled with Fluid (내부가 유체로 채워진 보강원통쉘의 동적거동 해석)

  • Youm, Ki-Un;Yoon, Kyung-Ho;Lee, Young-Shin;Kim, Jong-Kiun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2875-2886
    • /
    • 1996
  • This work present the experimental resutls for the free vibration of unstiffened, stiffened cylindrical shell filled with air, half water and full water. The natural frequencies and mode shapes of unstiffened, stiffened cylindrical shell are obtained experimentally also. The natural frequencies of stiffened cylindrical shell were generally highter than those of unstiffened cylindrical shell and natural requencies were decreased as cylindrical shell was filled with water. The effect of circumferential stiffener in the first mode was shown that natural frequency more increased 25% at air environment, 29% at half water environment and 37% at full water than those of unstiffened cylindrical shell, respectively. Also, the natural frequencies were decreased according to the added mass effect of fluid in the shell of unstiffened and stiffened cylindrical shell. The six mode shape results of all cases are simular and given. The natural frequencies are determined for a wide range of parameters : e.g. unstiffened shell, and filled with air, half and full water. The effects of varying the parameters on the free vibration frequencies and mode shapes are discussed.

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.