• Title/Summary/Keyword: 유체동력

Search Result 270, Processing Time 0.026 seconds

Study of the high pressure hose assemblies by accelerated life test (고압호스 조립체의 가속수명시험에 관한 연구)

  • Lee, Gi Chun;Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.886-892
    • /
    • 2013
  • Hydraulic hose assemblies are used as piping components for construction machinery, automobile, aircraft, industrial machinery, machine tools, and machinery for ships. Then the reliability of hose assemblies is important because total hydraulic system, which used to deliver the fluid power ($P^*Q$) needed to flexibility in the piping system, is not operated if the hose assembly failed in the system. The data of the accelerated life test estimated through the shape parameter(${\beta}$) resulting of the Weibull distribution analysis. This study has tried to reduce the test time resulting from varying impulse pressure range and the flexing diameter. Accelerated life test model for the test results was adopted the GLL(generalized log linear) and the accelerated indexes are identified as 6.64 for the pressure and 4.46 for flexing radius. Also, it found that shape parameter is 6.19, scale parameter(${\eta}$) is $1.035{\times}108$, which were adopted the pressure 35 MPa and the flexing diameter R100 mm in the used condition.

CFD Based Shape Design of Guide Vane for Fan Filter Unit (전산유체해석을 이용한 Fan Filter Unit(FFU)의 가이드 베인 형상설계)

  • Jang, Jun Hwan;Ahn, Joon;Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.709-716
    • /
    • 2013
  • A fan filter unit (FFU) is a device which supplies clean air from the ceiling in a clean room. With an increase in its size, velocity variation occurs within the exhaust plane and this damage the product quality or productivity. Hence, a guide vane is installed inside the device to enhance the velocity uniformity. Because the vane reduces the flow rate for a given pumping power, an optimum design is required to achieve velocity uniformity while minimizing the flow rate reduction at the same time. To find a geometry that satisfies these requirements, a series of numerical simulations has been conducted while changing the angle and length of the guide vanes. By changing the geometry of the side guide vane, the velocity uniformity increased by 3.7% and the flow rate decreased by 1.5%. For the center guide vane, the velocity uniformity increased by 2.9% and the flow rate decreased by 0.7%.

Power Generation and Control System Using Differential Pressure of District Heating Pipeline in a Substation (지역난방 사용자기계실 내 열수송관 차압을 이용한 발전 및 제어 기술)

  • Kim, Kyung Min;Park, Sung Yong;Oh, Mun Sei
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.90-96
    • /
    • 2017
  • When the hot water is supplied through the district heating (DH) pipeline, a pressure differential control valve (PDCV) protects the DH user equipment from the high pressure DH water and helps to supply DH water to long distance. It also controls the temperature and adjust the pressure in the main district heating pipeline. However, cavitation occurs in PDCV due to the use of high pressure DH water. It causes frequent failures and many problems. It also causes energy loss and complaints to both operators and users. In order to solve these problems, we will introduce the energy saving technology to replace the primary side PDCV with hydraulic turbine, convert the differential pressure into electricity, and utilize electricity as the power of the secondary side pump.

Numerical Analysis of the Movement of an Initially Hemispherical Droplet on Hydrophilic/Hydrophobic Surfaces (친수성/소수성 표면상에서 초기 반구형 액적의 움직임에 관한 수치해석)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.405-414
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources and numerically validated the results for a hypothetical 2D, initially having a hemicylindrical droplet. In this paper, the movement of an actual water droplet, initially having a 3D hemispherical shape, on horizontal hydrophilic/hydrophobic surfaces is simulated using a commercial computational fluid dynamics (CFD) package, Fluent, with VOF (volume of fluid) method. The results are compared with the 2D analysis of Myong (2014), and the transport mechanism for the actual water droplet is examined based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, surface free and pressure energies inside the droplet.

Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure (수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho;Cho, Hyun-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.

Geological Significance of Liquefaction and Soft-sediment Deformation Structures (액상화와 연질퇴적변형구조의 지질학적 의미)

  • Ghim, Yong Sik;Ko, Kyoungtae
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.471-484
    • /
    • 2019
  • Liquefaction occurs by a temporal loss of sediment strength as a consequence of increased pore water pressure during the re-arrangement of unconsolidated, granular sediments. Liquefaction is dependent on the physical properties of the sediments and cause surface cracks, landslide, and the formation of soft-sediment deformation structures(SSDS). SSDS is formed by the combined action of the driving force and deformation mechanism(liquefaction, thixotropy, and fluidization) that is triggered by endogenic or exogenic triggers. So research on the SSDS can unravel syndepositional geological events. If detailed sedimentologic analysis together with surrounding geological context suggest SSDS formed by earthquakes, the SSDS provide a clue to unravel syndepositional tectonic activities and detailed paleoseismological information(> Mw 5) including earthquakes that leave no surface expression.

Field Applications of Non-powered Downward Water Circulation System to Improve Reservoir Water Quality (저수지 수질개선을 위한 무동력 하향류 수류순환시스템의 현장적용성)

  • Jang, YeoJu;Lim, HyunMan;Jung, JinHong;Park, JaeRho;Kim, WeonJae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.109-119
    • /
    • 2019
  • Eutrophication has occurred due to the inflow of various water pollutants in many Korean reservoirs with low depth, and algal blooms of surface layer and low oxygenation of deep layer have repeated every year. There are several existing technologies to alleviate the stratification of reservoirs, but it is difficult to apply them in field sites due to the necessity of electric power and low economic efficiency. In this study, a non-powered water circulation system using natural energy of wind and water flow has been developed, and two test-beds constructed in the reservoirs with different conditions and examined its field applicability. Through computational fluid dynamics (CFD) simulation, it has been shown that the water circulation system could induce the downward flow to mitigate the stratification between surface and deep layers, and its influence radius could reach about 30 m. As a result of long-term monitoring of the test-beds, various water quality improvement effects have been observed such as moderation of DO fluctuation by water circulation, reduction of DO supersaturation and prevention of excessive pH rising. In order to improve the applicability of the water circulation system, it is considered necessary to review countermeasures against flood and depth conditions of each reservoir.

Study on the Selection of Optimal Operation Position Using AI Techniques (인공지능 기법에 의한 최적 운항자세 선정에 관한 연구)

  • Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.681-687
    • /
    • 2023
  • The selection technique for optimal operation position selection technique is used to present the initial bow and stern draft with minimum resistance, for achievingthat is, the optimal fuel consumption efficiency at a given operating displacement and speed. The main purpose of this studypaper is to develop a program to select the optimal operating position with maximum energy efficiency under given operating conditions based on the effective power data of the target ship. This program was written as a Python-based GUI (Graphic User Interface) usingbased on artificial intelligence techniques sucho that ship owners could easily use the GUIit. In the process, tThe introduction of the target ship, the collection of effective power data through computational fluid dynamics (CFD), the learning method of the effective power model using deep learning, and the program for presenting the optimal operation position using the deep neural network (DNN) model were specifically explained. Ships are loaded and unloaded for each operation, which changes the cargo load and changes the displacement. The shipowners wants to know the optimal operating position with minimum resistance, that is, maximum energy efficiency, according to the given speed of each displacement. The developed GUI can be installed on the ship's tablet PC and application and used to determineselect the optimal operating position.

Structure Analysis for Damper stopper of Lock-up Clutch (록업 클러치의 댐퍼 스토퍼에 대한 구조해석)

  • Oh, Myung-Seok;Nam, Sang-Heon;Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1865-1870
    • /
    • 2014
  • Torque converter is a complex turbomachine used to transfer power smoothly from an engine to a transmission by lock-up clutch. A torque converter consists of the hydrodynamic clutch device and the lock-up clutch device. The retaining plate and driven plate are part of the lock-up clutch. The lock-up clutch connects directly to achieve the improvement of efficiency and fuel consumption. In this paper, using structure analysis of stress distribution on the shape of the mechanical stopper on retaining plate. The shape of mechanical stopper has effect on the stress distribution of lock-up clutch.

Numerical Simulation of Turbulent Flows in Inlet Duct of Heat Recovery Steam Generator (배열회수 안내덕트 내부의 난류유동 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.809-813
    • /
    • 2011
  • Turbulent flows are numerically simulated in the three dimensional inlet duct for heat recovery steam generator. The present study is aimed to analyze the effect of a variation in turbulent flow pattern by the change of roof angle in the transition duct. The finite volume based Navier-Stokes equations with unstructured grids are solved to make clear the flow dynamic phenomena. Reviews are made on with the data of path lines, velocity vectors, dynamic pressure, residuals for numerical convergence and so on. The k-epsilon, k-omega, Reynolds stress and RNG k-epsilon are used for generation of turbulence. Two types of roof angle are applied with and without the swirl in the duct. Turbulent flow patterns could be investigated for the optimum duct design based on the computational results.