건설적 귀납법은 사례들이 갖고 있는 속성들에 적합한 연산자를 적용하여 이들 사례들을 좀 더 효율적으로 분류할 수 있는 새로운 속성들을 도출해 내는 기법이다. 본 논문에서는 주어진 사례의 집합으로부터 PROSPECTOR에서 사용한 규칙 형태의 분류 규칙을 습득하는 유전 알고리즘 기반 귀납적 학습 환경을 위한 건설적 귀납법을 제시한다. 속성 결합 연산자와 유도된 속성의 유용성을 평가하기 위한 방법을 중심으로 건설적 귀납법에 대해 자세히 설명하고 다양한 사례 집합을 이용하여 건설적 귀납법이 유전 알고리즘 기반 학습 환경에 미치는 영향을 평가하였다.
유전자 알고리즘을 이용하여 구조물의 지진응답해석에 사용할 인공 가속도시간이력을 작성하는 방법을 제시한다. 유전자 알고리즘을 적용하기 위해서 유전원질에 해당되는 결정변수로서 응답스펙트럼 값을 계산할 진동수를 결정하고, 산술평균 교차연산자와 산술비 돌연변이연산자를 제안한다. 이들 연산자와 전형적인 단순 교차연산자를 사용하여 설계응답스펙트럼에 부합하는 인공 지진파 작성에 사용한다. 또한 작성된 인공 가속도시간이력은 실제 계측되는 지진파의 몇 가지의 외형적 특성을 가져야 하므로 이를 고려한 인공 가속도시간이력이 작성되도록 한다. 이 외형적 특성으로는 가속도시간이력의 포락형태, 지진파의 2수평성분간의 상관관계, 지반의 최대가속도 - 최대속도 - 최대변위 관계 등이다.
열의 수가 수십만에 이르는 대규모 maximal covering 문제(MCP)를 유전 알고리즘을 통해 해결하는 것에는 한계가 있다. 본 논문에서는 대규모 MCP를 유전알고리즘이 효율적으로 풀 수 있도록 하기 위해 특별히 고안된 교차 연산자와 돌연변이 연산자를 소개한다. 또한, 본 연구에서는 비발현 유전자를 사용하는 새로운 유전 알고리즘을 제시한다. 비발현 유전자는 유전 연산 과정에서 상실될 정보 중 이후의 세대에서 유용할 가능성이 있는 정보를 자손에게 전달하기 위해 보존하는 역할만 할 뿐, 발현되지 않음으로 인해 해의 평가 시에는 반영되지 않는 유전자이다. 비발현 유전자를 사용하는 유전 알고리즘은 집단의 다양성을 유지하는데 유리하여 대규모 MCP를 해결하는데 있어서 보다 효율적으로 탐색을 수행할 수 있다. 현장의 대규모 MCP 데이타로 실험한 결과 비발현 유전자를 가진 유전 알고리즘이 이웃해 탐색 알고리즘인 타부 탐색보다 훨씬 우수한 탐색 성능을 보임을 확인할 수 있었다.
주어진 사례의 집합으로부터 그 사례들을 분류할 수 있는 프러스펙터 규칙 유형의 분류 규칙들을 습득하는 학습 시스템을 유전자 알고리즘을 이용하여 구현하였다. 유전자 알고리즘을 이용한 학습 시스템의 구현에서 개체 집단은 규칙 집합으로 구성되고 규칙 집합은 교배, 돌연 변이, 역치 연산자 등의 유전 연산자를 이용하여 규칙 집합내의 규칙을 교환함으로써 새로운 자식을 생성한다. 본 논문에서는 구현된 학습 환경을 분류 규칙의 구문 형태와 의미, 개체 집단의 구조 및 유전 연산자의 구현 등을 중심으로 설명한다. 효율적인 돌연변이 연산자의 구현을 위해 개발된 규칙 성능 평가 기법과 규칙생성 기법을 소개하고 분류 성능을 향상시키기 위한 기법으로 다수의 규칙 집합을 이용하여 분류 시스템을 구축하기 위한 기법을 소개한다. 본 연구를 통해 구현된 학습 시스템의 성능을 다양한 사례 집합을 이용하여 평가하고 이를 신경망, 결정 트리 등과 비교하였다.
본 논문에서는 퍼지 제어기의 설계를 위한 다중 돌연변이 연산자를 갖는 Niche Meta 유전 알고리즘을 제안한다. 제안된 알고리즘에서 유전자는 유전 알고리즘에 사용되는 교배율이나 돌연변이율과 같은 구조 매개변수와 퍼지 제어기의 입$cdot$출력 소속함수를 나타내는 매개변수로 구성된다. 제안된 알고리즘은 부개체군들에 대해 퍼지 제어기의 소속함수의 매개변수를 최적화시키는 지역적 탐색을 수행하면서 전체 개체군에 대해서 최적의 구조 매개변수에 대한 전역적인 탐색을 수행한다. 다중 돌연변이 연산자는 지역적 진화의 결과에 따라 진화에 가장 적합한 돌연변이 방법으로 선택된다. 제안된 알고리즘의 효율성을 입증하기 위해 2 자유도 구륜 이동 로봇에 대한 모의 실험을 수행한다.
전통적인 job shop 일정계획문제는 NP_hard 문제로 조합최적화 문제이다 일반적인 가정은 job이 방문하는 기계들의 경로가 고정되어 있다는 것이다. 경로 유연성을 가지는 job shop 일정계획문제는 job이 방문하는 기계들의 경로가 고정되어져 있지 않다는 것이다. 이러한 경우에 전통적인 job shop 문제를 복잡하게 만든다. 경로 유연성을 가지는 job shop 문제도 NP-hard 문제이다. 그러므로 휴레스틱이나 AI 기법들을 사용하는 하는 것이 불가피하게 되었다. 유전 알고리즘은 매우 복잡한 조합 최적화문제인 job shop 일정계획문제에 적용되어지고 있다. 이 논문은 최대완료시간(makespan)으로 경로 유연성을 가지는 job shop 일정계획문제를 풀기 위한 유전 알고리즘을 제시하고자 한다. 먼저 경로 유연성을 가지는 job shop 일정계획문제에 대한 정의를 내리고 유전 알고리즘을 구축하기 위한 첫 단계로 유전적 표현 즉, 개체 표현방법에 대해 설명하고 유전 연산자의 소개 그리고 알고리즘 재생과정을 제시하고 수치실험을 통해 알고리즘이 양질의 일정계획을 찾을 수 있다는 것을 보이고자 한다.
본 논문에서는 기존의 깊이 복원 방법을 개선하기 위해서 유전 알고리즘을 이용한 새로운 스테레오 정합법을 제시하였고 다양한 영상에 적용하기 위해 영상의 영역 정보를 고려하였다. 유전 알고리즘은 자연선택과 개체군 유전학에 기반한 효율적인 탐색 기법인데, 이들의 염색체 교차와 돌연변이 같은 연산자를 정합 환경에 적합하도록 변형시켰다. 영상신호를 쉽게 다루기 위해서 2차원 염색체 구조를 사용하였으며, 스테레오 정합에 많이 사용되는 유사성과 연속성 제약 조건에 기반하여 적자를 선택하는 적응 함수를 정의하였다. 그리고 기존 유전 알고리즘의 수렴속도를 개선하기 위해서 무작위로 변이를 발생시키지 않고 휘도차를 이용하여 변이를 발생시키는 정보기반 변이 발생을 사용하였다. 실험을 통하여 본 방법은 이완처리를 포함한 정합법보다 계산 부하를 줄일 수 있었고 비교적 안정된 결과를 얻을 수 있었다.
게임이나 네비게이션 시스템, 관광경로 설계에 있어서 경로찾기는 매우 중요한 부분 중의 하나이다. 일반적으로 TSP(Traveling Salesman Problem), RPP(Rural Postman Problem), CPP(Chinese Postman Problem)와 같은 경로찾기 문제들은 일반적인 알고리즘으로 최적해를 구할 수 없다. 문제크기가 커질수록 해집합이 폭발적으로 커짐으로써 전체 해집합을 탐색하는데 많은 비용이 든다. 따라서, 이러한 문제들은 유전알고리즘이나 Simulated Annealing과 같은 휴리스틱 알고리즘을 이용하여 근사최적 경로를 찾는다. 본 논문에서는 이와 같은 경로찾기 문제의 근사 최적해를 구하기 위한 시뮬레이션 시스템을 설계하고 구현하였다. 본 연구에서 구현한 시뮬레이션 시스템에는 유전알고리즘 엔진(GA 엔진)과 사용자 인터페이스를 제공한다. 사용자 인터페이스는 유전알고리즘에 사용될 파라미터를 설정하는 부분이며, GA 엔진은 유전알고리즘의 연산자들을 제공하는 부분이다. 본 논문에서 구현한 시뮬레이션 시스템은 게임과 같은 경로찾기 등에 활용될 수 있다.
Maximal Covering 문제(MCP)란 행렬 상에서 n개의 열(column) 중 p개를 선택하여 m개의 행(row)중 최대한 많은 행을 cover하는 문제로 정의된다. 본 논문에서는 MCP를 유전 알고리즘(Genetic Algorithm)으로 해결하기 위해 문제에 적합하게 설계된 교차 연산자(crossover operator)와 비발현 유전인잔(unexpressed gene)를 가진 새로운 염색체 구조를 제시한다. 해결하고자 하는 대상 MCP의 규모가 매우 큰 경우 전통적인 임의교차(random crossover) 방법으로는 좋은 결과를 얻기가 힘들다. 따라서 본 연구에서는 그리디 교차(greedy crossover) 방법을 제시하여 문제를 해결한다. 그러나 이러한 그리디 교차를 사용하더라도 조기 수렴 등의 문제로 인해 타부 탐색 등의 이웃해 탐색 방법에 비해 그리 좋은 결과를 얻기가 힘들다. 본 논문은 이러한 조기 수렴 문제를 해결하고 다른 이웃에 탐색 방법보다 더 좋은 결과를 얻기 위해 비발현 유전인자(unexpressed gene)를 가진 염색체를 도입하여 해결함을 특징으로 한다. 비발현 유전인자는 교차 과정에서 자식 염색체의 유전인자로 전달되지 않은 정보 중 나중에라도 유용할 가능성이 보이는 정보를 보존하는 역할을 하여 조기 수렴 문제를 해결하는데 도움을 주어 보다 나은 결과를 얻을 수 있게 해준다. 대규모 MCP를 해결하는 실험에서 새로운 비발현 유전인자를 적용한 유전 알고리즘이 기존의 유전 알고리즘뿐만 아니라 다른 탐색 기법에 비해 더욱 좋은 성능을 보여줌을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.