A GA-based Inductive Learning System for Extracting the PROSPECTOR`s Classification Rules

프러스펙터의 분류 규칙 습득을 위한 유전자 알고리즘 기반 귀납적 학습 시스템

  • 김영준 (상명대학교 소프트웨어학부)
  • Published : 2001.11.01

Abstract

We have implemented an inductive learning system that learns PROSPECTOR-rule-style classification rules from sets of examples. In our a approach, a genetic algorithm is used in which a population consists of rule-sets and rule-sets generate offspring through the exchange of rules relying on genetic operators such as crossover, mutation, and inversion operators. In this paper, we describe our learning environment centering on the syntactic structure and meaning of classification rules, the structure of a population, and the implementation of genetic operators. We also present a method to evaluate the performance of rules and a heuristic approach to generate rules, which are developed to implement mutation operators more efficiently. Moreover, a method to construct a classification system using multiple learned rule-sets to enhance the performance of a classification system is also explained. The performance of our learning system is compared with other learning algorithms, such as neural networks and decision tree algorithms, using various data sets.

주어진 사례의 집합으로부터 그 사례들을 분류할 수 있는 프러스펙터 규칙 유형의 분류 규칙들을 습득하는 학습 시스템을 유전자 알고리즘을 이용하여 구현하였다. 유전자 알고리즘을 이용한 학습 시스템의 구현에서 개체 집단은 규칙 집합으로 구성되고 규칙 집합은 교배, 돌연 변이, 역치 연산자 등의 유전 연산자를 이용하여 규칙 집합내의 규칙을 교환함으로써 새로운 자식을 생성한다. 본 논문에서는 구현된 학습 환경을 분류 규칙의 구문 형태와 의미, 개체 집단의 구조 및 유전 연산자의 구현 등을 중심으로 설명한다. 효율적인 돌연변이 연산자의 구현을 위해 개발된 규칙 성능 평가 기법과 규칙생성 기법을 소개하고 분류 성능을 향상시키기 위한 기법으로 다수의 규칙 집합을 이용하여 분류 시스템을 구축하기 위한 기법을 소개한다. 본 연구를 통해 구현된 학습 시스템의 성능을 다양한 사례 집합을 이용하여 평가하고 이를 신경망, 결정 트리 등과 비교하였다.

Keywords

References

  1. D. E. Goldberg, 'Genetic Algorithms in Search, Optimization and Machine Learning,' Addison-Wesley, 1989
  2. M. Srinivas and L. M. Parnaik, 'Genetic algorithms: a survey,' IEEE Computer. Vol. 27, pp. 17-26, June 1994 https://doi.org/10.1109/2.294849
  3. R. Duda, P. Hart and J. Nilsson, 'Subjective Bayesian methods for rule-based inference systems,' in Proc. National Computer Conference, pp. 1075-1082, 1976
  4. K. De Jong, 'Genetic algorithm-based learning,' Machine Learning-An Artificial Intelligence Approach, Vol. 3, Y. Kodratoff and R. S. Michalski, Eds, San Mateo, CA:Morgan Kaufmann, pp. 611-638, 1990
  5. G. Roberts, 'Dynamic, planning for classifier systems,' in Proc. 5th Int. Conf. Genetic Algorithms, pp. 231-237, 199
  6. S. Wilson and D. Goldberg, 'A critical review of classifier systems.' in Proc. 3rd Int. Conf. Genetic Algorithms, PP. 244-255, 1989
  7. J. Oliver, 'Discovering individual decision rules: an application of genetic algorithms,' in Proc. 5th Int. Conf. Genetic Algorithms, pp. 216-222, 1993
  8. M. G. Cooper and J. J. Vidal, 'Genetic design of fuzzy controllers: the cart and jointed-pole problem,' The Third Int. Conf. Fuzzy Systems, Vol.3, pp, 1332-1337, 1994 https://doi.org/10.1109/FUZZY.1994.343619
  9. A. Hornaifar and E. McCormick, 'Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms,' IEEE Trans. Fuzzy Systems, Vol. 3, No.2, pp. 129-139, 1995 https://doi.org/10.1109/91.388168
  10. C. K Chiang, H. Y. Chung, and J. J. Lin, 'A self-learning fuzzy logic controller using genetic algorithms with reinforcements,' IEEE Trans. Fuzzy Systems, Vol. 5, pp. 460-467, 1997 https://doi.org/10.1109/91.618280
  11. Y. Yuan, and H. Zhaung, 'A genetic algorithm for generating fuzzy classification rules,' Fuzzy Sets Syst., Vol. 84, No.1, pp, 1-19, Nov. 1996 https://doi.org/10.1016/0165-0114(95)00302-9
  12. H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, 'Selecting fuzzy if-then rules for classification problems using genetic algorithms,' IEEE Trans. Fuzzy Systems, Vol.3, pp, 250-270, 1995 https://doi.org/10.1109/91.413232
  13. H. Ishibuchi and T. Nakashima, 'Improving the Performance of Fuzzy Classifier Systems for Pattern Classification Problems with Continuous Attributes,' IEEE Transactions On industrial electronics. Vol. 46, No.6, December 1999, pp. 1057-1068 https://doi.org/10.1109/41.807986
  14. O. Cordon, M. Jesus, and F. Herrera, 'Genetic Learning of Fuzzy Rule-Based Classification Systems Cooperating with Fuzzy Reasoning Methods,' Int. Journal of Intelligent Systems, Vol. 13, pp. 1025-1053, 1998 https://doi.org/10.1002/(SICI)1098-111X(199810/11)13:10/11<1025::AID-INT9>3.0.CO;2-N