본 논문에서는 여러 개의 클래스가 존재할 때, 각 클래스 내에서 샘플들을 클러스터링하고 서로 다른 클래스들과 분산도를 비교하여 클러스터가 가장 겹치지 않는 유전자 쌍들을 찾는다. 각 유전자 쌍에서 테스트 샘플과 가장 가까운 클러스터를 찾음으로써 클래스를 분류하고, 최종적으로 과반수 의결(Majority vote)하여 가장 많이 분류된 클래스를 최종 클래스로 확정한다. 그 결과, 해당 모델이 여러 개의 클래스를 가진 데이터에서 다른 비교 알고리즘의 모델들보다 높은 정확도를 나타내었다.
마이크로어레이 분류는 전형적으로 분류기 디자인과 에러 추정이 현저하게 작은 샘플에 기반한다는 것과 교차 검증 에러 추정이 대다수의 논문에 사용된다는 주목할 만한 두 가지 특징을 소유한다. 마이크로어레이 난소 암 데이터는 수 만개의 유전자 발현으로 구성되어 있고, 이러한 정보를 동시에 분석하기 위한 어떤 체계적인 절차도 없다. 본 논문에서는, 통계에 따라 유전자의 우선순위를 정함으로써 표지유전자를 선택하였고, 널리 보급되어 있는 분류 규칙인 선형 분류 분석, 3-nearest-neighbor와 결정 트리 알고리즘은 표지 유전자를 선택한 데이터와 선택하지 않는 데이터의 분류 정확도 비교를 위해 사용되어졌다. ANOVA를 이용하여 선택된 표지 유전자를 포함하는 마이크로어레이 데이터 셋에 선영 분류분석 규칙을 적용한 결과 97.78%의 가장 높은 분류 정확도와 가장 낮은 예측 에러 추정치를 나타내었다.
유전자의 구조 예측 및 발현 기작에 대한 연구는 매우 중요한 사안으로 대두되고 있다. 특히 유전자 발현 제어에 중요한 역할을 하는 프로모터 영역을 예측하는 것은 전체 생명체 네트워크 규명을 위한 단초를 제공하기 때문에 많은 연구가 이루어지고 있다. 본 논문에서는 이러한 진핵생물의 유전자 프로모터 예측을 위한 Support Vector Machine(SVM) 활용방안에 대한 연구내용을 다루고 있다. 특성 벡터 값 생성을 위한 인코딩 방법 및 학습 데이터들의 구성에 대한 다양한 실험을 통해 SVM활용 방안에 대한 올바른 방향을 제시하고 있다.
암 조직에는 다양한 형태의 세포가 존재하지만, 이들의 조성을 실험적으로 확인하기는 매우 어렵다. 본 연구에서는 유전자 발현 데이터에 통계적 기계학습 모델을 적용하여 각 샘플의 세포 조성을 추론하고, 이러한 세포 조성이 암조직과 정상 조직간에 차이가 있는지를 확인하였다. 두 가지 서로 다른 회귀 모델을 이용하여 세포 조성을 예측한 결과 CD8 T cell과 Neutrophil이 구강암 조직에서 정상 조직에 비해 증가함을 확인할 수 있었다. 또한 비지도학습 중 하나인 t-SNE를 적용하여, 유추된 세포 조성에 의해 정상 조직과 구강암 조직이 서로 군집을 이루고 있음을 확인하였고, 지도 학습 기반의 다양한 분류 알고리즘들을 이용하여 세포 조성 정보를 이용하여 구강암과 정상 조직을 예측하는 것이 가능함을 보였다. 이 연구는 구강암의 면역 세포 침투에 대한 이해도를 증진하는데에 도움을 줄 수 있을 것이다.
RNA-시퀀싱은 표본에 대한 전사체 전체의 패턴을 제공하는 기법이다. 그러나 RNA-시퀀싱은 표본 내 전체 세포에 대한 평균 유전자 발현만 제공할 수 있으며, 표본 내의 이질성(heterogeneity)에 대한 정보는 제공하지 못한다. 단일 세포 RNA-시퀀싱 기술의 발전을 통해 우리는 표본의 단일 세포 수준에서 이질성과 유전자 발현의 동역학(dynamics)에 대한 이해를 할 수 있게 되었다. 예를 들어, 우리는 단일 세포 RNA-시퀀싱을 통해 복잡한 조직을 구성하는 다양한 세포 유형을 식별할 수 있으며, 특정 세포 유형의 유전자 발현 변화와 같은 정보를 알 수 있다. 단일 세포 RNA-시퀀싱은 처음 도입된 이후 많은 이들의 관심을 끌게 되었으며, 이를 활용하기 위한 대규모 생물정보학(bioinformatics) 도구가 개발되었다. 그러나 단일 세포 RNA-시퀀싱에서 생성된 빅데이터 분석에는 데이터 전처리에 대한 이해와 전처리 이후 다양한 분석 기술에 대한 이해가 필요하다. 본 종설에서는 단일 세포 RNA-시퀀싱 데이터분석과 관련된 작업과정의 개요를 제시한다. 먼저 데이터의 품질 관리, 정규화 및 차원 감소와 같은 데이터의 전 처리 과정에 대해 설명한다. 그 이후, 가장 일반적으로 사용되는 생물정보학 도구를 활용한 데이터의 후속 분석에 대해 설명한다. 본 종설은 이 분야에 관심이 있는 새로운 연구자를 위한 가이드라인을 제공하는 것을 목표로 한다.
본 논문은 진화 알고리즘(Evolutionary algorithm)의 기법중의 하나인 유전자 프로그래밍(Genetic programming)을 이용하여 miRNA 유전자를 발굴하기 위한 알고리즘을 소개하고 있다 miRNA는 세포내에서 유전자의 전사를 중지시킴으로써 유전자의 발현을 직접적으로 조절하게 되는 작은 RNA 집단 중의 하나이다. 그러므로 miRNA를 유전체 데이터에서 동정해내는 작업은 생물학적으로 상당히 중요하다. 한편 유전체 데이터에서 miRNA를 동정해내는 알고리즘은 생물학적 실험에서의 시간과 비용을 상당히 절감할 수 있으며, 생물학적으로 miRNA를 동정하는 많은 어려움을 덜어주게 된다. 하지만 계산학적으로 miRNA의 동정은 1차 염기서열상의 통계적인 중요도가 부족하여 기존의 유전자 예측 알고리즘을 적용하기에는 어려움이 있다. 따라서 본 연구에서는 miRNA의 염기서열보다는 2차구조에서 더 많은 유사성을 갖는다는 점을 착안하여, 2차구조내에서 공통적인 구조를 찾아내고, 그 정보를 이용하여 miRNA를 동정해내는 방법으로 접근하였다. 이 알고리즘의 성능평가를 위해 우리는 test set을 이용하여 학습된 모델의 특이도(= 34/38)와 민감도(= 38/67)를 계산하였다. 평가결과 본 알고리즘이 기존의 miRNA 예측 프로그램보다 높은 특이도를 갖고 있으며, 유사한 수준의 민감도를 갖고 있음을 보여 주고 있다.
정보력 있는 유전자는 특정한 실험 조건의 특성을 나타내주는 발현수준의 유전자를 의미한다. 이 유전자들은 여러 집단 간의 발현수준에서 유의한 차이를 보여주며, 실제로 집단 간의 차이를 유발하는 유전자일 확률이 높아 특정 생물학적 현상과 관련 있는 정보적 유전자를 찾는 연구에 이용될 수 있다. 본 논문에서는 먼저 그 동안 제안된 여러 표준화 방법들 중에서 가장 널리 사용되고 있는 방법들을 이용하여 데이터를 표준화 한 후 제안한 유사성 척도 조합 방법으로 정보력 있는 유전자들을 추출할 수 있는 시스템을 고안하였다. 다층퍼셉트론 신경망 분류기를 이용하여 각 표준화 방법들의 성능을 비교분석하였다. 그 결과 Lowess 표준화 후 피어슨 적률 상관 계수와 유클리디안 거리 계수 조합을 이용하여 선택된 200 유전자들을 멀티퍼셉트론 신경망 분류기로 분류한 결과 93.84%의 향상된 분류 성능을 보였다.
본 연구의 목적은 BrDSR(Drought Stress Resistance in B. rapa) 유전자의 기능을 명확히 밝히고, 배추에서 건조 스트레스 반응 유전자들을 분석하는데 있다. 내혼계배추('CT001')와 BrDSR 완전장(438bp의 오픈리딩프레임)을 지닌 pSL100 vector를 재료로 아그로박테리아를 이용한 배추 형질전환을 수행하였다. PCR 분석을 통해 4개체의 형질전환체를 확보하였고, 이들의 BrDSR 발현량은 건조 스트레스 조건에서 비형질전환체 대비 약 1.9-3.4배 정도 더 큰 것으로 분석되었다. 또한 표현형 분석에서도 BrDSR이 과발현된 형질전환체들은 건조 스트레스에 저항성을 보이며 정상적인 생장을 하였다. 기 구축된 건조 스트레스 반응 유전자의 상호발현 네트워크를 기반으로 BrDSR과 밀접한 관련이 있는 유전자들을 분석하기 위해 B. rapa 135K cDNA microarray 데이터를 분석하였다. 그 결과, 환경 스트레스와 관련하여 식물체에서 잎의 노화와 자가소화에 관련된 것으로 보고된 'dark inducible 2(DIN2, AT3G60140)'와 'autophagy 8h(ATG8H, AT3G06420)' 유전자가 확인되었다. 위 결과들을 근거로 BrDSR 유전자는 건조 스트레스에 대한 저항성 향상에 중요한 역할을 할 것으로 판단되었다.
본 연구에서는 국내외에서 수집한 벼 294개 유전자원 핵심집단을 대상으로 벼의 지엽각 특성에 대한 조사를 수행하였고, GWAS를 이용하여 지엽각 연관 유전자를 추출 및 분석하였다. 표현형 데이터를 이용한 GWAS의 Manhattan plot 결과 분석을 통해, 각 집단에서 염색체를 대상으로 표현형과 통계적 유의성을 나타내 연관성을 보이는 SNP를 발굴하였다. 지엽각 관련 특성에 대하여 선행 연구된 QTL region과의 비교를 통하여 본 연구에서 발굴된 SNP간의 유의성을 조사한 결과, 지엽각과 유의성이 있는 SNP (S8-19815442)가 이미 확인된 QTL region에 위치하는 것으로 나타났으며, 후보유전자 Os08g31950 대해 연관 유전자 변이를 관찰하기 위해서 형질 특이적 품종군 간의 염기서열을 비교한 결과 1개의 지역에서 단일염기변이가 검출되었다. Os08g31950의 조직별 RNA의 상대적 발현량 수준을 비교한 결과, Os08g31950 유전자는 모든 조직에서 높은 발현량을 확인할 수 있었으며 조직별로 다양한 발현 양상을 관찰할 수 있었다. 또한, 모두 직립형 품종군에서 상대적으로 발현량이 높게 나타났으며 뿌리보다 잎에서의 발현율이 높게 나타났다. 본 연구를 통해 동정된 지엽각 연관 후보유전자 Os08g31950는 벼 생육 및 수량 증대에 이용할 수 있는 마커제작 및 육종의 기초자료가 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.