• Title/Summary/Keyword: 유연외팔보

Search Result 41, Processing Time 0.05 seconds

Multi-Input Multi-Output Optimal Control of the Vibration of a Flexible Robot Manipulator (유연한 로봇 조작기 진동의 다입출력 최적제어)

  • 김승호;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1587-1600
    • /
    • 1991
  • 본 연구에서는 로봇조작기를 강체부와 유연한 외팔보로 이루어진 모델로 설정 한 후 확장된 Hamilton의 원리를 적용하여 제어계의 운동방정식을 유도하였다. 계를 유한개의 제어 모드와 잔류 모드로 구분하고, 제어 모드에 대해 최적제어를 수행하기 위해 관측기를 설계하였으며, 진동에 관련된 측정 불가능한 상태변수를 추정하였다. 분석과 검토는 서보모터가 모든 제어를 담당하는 방식과 서보모터의 제어 방식에 작동 기를 추가시켜 병행 제어하는 다입출력 방식으로 구별하여 수행하였다.

Modeling of Sound-structure Interactions for Designing a Piezoelectric Micro-Cantilever Acoustic Vector Sensor (압전 미세 외팔보 형 수중 음향 벡터센서의 작동 원리와 설계 기법)

  • Yang, Seongkwan;Kim, Junsoo;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • An acoustic vector sensor is a device that is capable of measuring the direction of wave propagation and the acoustic pressure. In this paper, the modeling of micro-cantilever sensor for the vector sensor are proposed by consideration of acoustic phenomenon in water. Two models based on unimorph structure are proposed in this paper and corresponding transfer function which describes the relation between input pressure wave and output voltage depending on incidence angle and frequency of pressure wave is derived based on lumped model. It has been shown that very thin and flexible micro-cantilever can be used to measure directly the particle velocity component in water.

Experimental Verification of Flexible Multibody Dynamic Simulations for A Rotating Beam (회전 외팔보에 대한 유연 다물체 동역학 시뮬레이션의 실험적 검증)

  • Kim, Seong-Su;Gang, Yeon-Jun;Lee, Gyu-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.267-274
    • /
    • 2002
  • Using a flexible rotating beam test bed, experimental verification of a flexible multibody dynamic simulations for a rotating beam model has been carried out. The test bed consists of a flexible arm, harmonic driver reducer, AC servo motor and DSP board with PC. The mechanical ports of the test bed has been designed using 3D CAD program. For the simulation model, mass and moment of inertia of each part of the flexible rotating beam test bed are also obtained from 3D CAD model. In the flexible multibody dynamic simulations, the substructuring model has been established to capture nonlinear effects of the flexible rotating beam. Through the experimental verification, substructuring model provides better results than those from the linear model in the high speed rotation.

Active Vibration Control of Flexible Cantilever Beam by Intelligent Control Technique (지능제어 기법에 의한 유연 외팔보의 능동 진동제어)

  • Shin, J.;Park, S. H.;Oh, J. E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.205-212
    • /
    • 1997
  • In this study, active vibration control for a flexible cantilever beam was performed by using the intelligent control technique. The intelligent control method which integrating the back propagation algorithm and the fuzzy inference technique was proposed and its performance was examined. The proposed control algorithm for the flexible cantilever beam was verified via computer simulation of active vibration control. Furthermore, the control system and its efficiency were investigated via experiments on active vibration control by the intelligent control technique without a digital signal processing device.

  • PDF

Developement of A Flexible Rotating Beam Test Bed for Experimental Varification (회전 유연 외팔보 진동 시뮬레이션 검증을 위한 테스트 베드 구축)

  • Kang, Youn-Jun;Kim, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.534-539
    • /
    • 2000
  • A flexible rotating beam test bed has been developed for experimental verification of flexible rotating beam dynamics and vibration. It consists of a flexible arm, harmonic driver reducer, ac servo motor and DSP board with PC. To capture the motion induced stiffening effects of the flexible rotating beam, substructuring model has been established in multibody dynamics simulation. Substructuring model provides better results comparing with experimental data.

  • PDF

Reduction of the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion (병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감 방법)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.3-10
    • /
    • 2008
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a single-degree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the shock response spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

Wireless Telemetry of an Oscillating Flow using Mesoscale Flexible Cantilever Sensor (메소스케일 유연 외팔보 센서를 이용한 진동유동의 무선 계측)

  • Park, Byung Kyu;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.495-501
    • /
    • 2013
  • This paper describes a flexible wireless telemetering system using a mesoscale cantilever sensor, which is microfabricated with a patterned thin Ni-Cu foil on a resin substrate. The dynamic validation of the sensor has been conducted in a flow. The wireless telemetry is used to obtain data regarding the oscillating flows. It is shown that the sensor is nearly independent of the environmental temperature and is suitable for application to primary healthcare and diagnostic devices. It can be easily integrated with other modules for measuring physiological parameters, e.g., blood pressure, oxygen saturation, and heart rate, to increase the convenience and reliability of diagnosis. The precision and reliability of the sensor are also dependent on the design of the analog front-end and noise reduction techniques. It is shown that the present system's minimum interval between packet transmissions is ~16 ms.

Optimal Command Input for Suppressing the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion and Its Comparison with the Input Shaping Method (병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감을 위한 최적 명령 입력 및 입력 다듬기 방법과의 비교)

  • Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.589-594
    • /
    • 2007
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a singledegree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the Shock Response Spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

  • PDF

Integrated Structure and Controller Design of Single-Link Flexible Arm for Improving the Performance of Position Control (유연 외팔보의 위치제어 성능향상을 위한 형상 및 제어기 통합설계)

  • Lee, Min-U;Park, Jang-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.120-129
    • /
    • 2002
  • An integrated structure and controller design approach for rotating cantilever beam is presented. An optimization method is developed for improving positioning performance considering the elastic deformations during high speed rotation and adopting the beam shape and the control gains as design variables. For this end, a dynamic model is setup by the finite element method according to the shape of the beam. The mass and stiffness of the beam are distributed in such a way that the closed-loop poles of the control system should be located leftmost in the complex s-plane. For optimization method, the simulated annealing method is employed which has higher probability to find the global minimum than the gradient-based down-hill methods. Sequential design and simultaneous design methods are proposed to obtain the optimal shape and controller. Simulations are performed with new designs by the two methods to verify the effectiveness of the approach and the results show that the settling time is improved for point-to-point position controls.