DOI QR코드

DOI QR Code

Wireless Telemetry of an Oscillating Flow using Mesoscale Flexible Cantilever Sensor

메소스케일 유연 외팔보 센서를 이용한 진동유동의 무선 계측

  • Park, Byung Kyu (Institute of Advanced Machinery and Design, Seoul Nat'l Univ.) ;
  • Lee, Joon Sik (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 박병규 (서울대학교 정밀기계설계공동연구소) ;
  • 이준식 (서울대학교 기계항공공학부)
  • Received : 2012.11.19
  • Accepted : 2012.12.18
  • Published : 2013.05.01

Abstract

This paper describes a flexible wireless telemetering system using a mesoscale cantilever sensor, which is microfabricated with a patterned thin Ni-Cu foil on a resin substrate. The dynamic validation of the sensor has been conducted in a flow. The wireless telemetry is used to obtain data regarding the oscillating flows. It is shown that the sensor is nearly independent of the environmental temperature and is suitable for application to primary healthcare and diagnostic devices. It can be easily integrated with other modules for measuring physiological parameters, e.g., blood pressure, oxygen saturation, and heart rate, to increase the convenience and reliability of diagnosis. The precision and reliability of the sensor are also dependent on the design of the analog front-end and noise reduction techniques. It is shown that the present system's minimum interval between packet transmissions is ~16 ms.

곤충을 비롯한 많은 생물은 매질의 진동을 감지할 수 있는 다양한 감각기관을 이용하여 외부 교란을 감지하고 서로 통신하며 생명 유지활동을 하고 있다. 가장 가까이 접하는 진동유동의 대표적인 예로는 인체의 호흡을 들 수 있다. 본 연구에서는 마이크로제조 공정을 통해 메소스케일 저항식 감지소자, 특히 외팔보 형상의 유연 감지소자를 이용한 유량측정법을 제안하고, 무선통신을 이용한 유동측정 시스템화 및 휴대화의 가능성을 고찰하였다. 탄성계수가 낮은 기질재료를 사용함으로써 온 습도에 영향을 받지 않는 건강 진단용 호흡센서로서의 가능성 및 확장성을 확인하였다. 또한 유동감지 센서의 측정 데이터를 분석한 결과, 정밀성과 신뢰성은 마이크로 컨트롤러의 분해능, 노이즈 제거기술에도 의존하는 것으로 나타났다. 이 시스템에서 패킷 간의 최소 전송소요 시간은 약 16 ms로 나타났다.

Keywords

References

  1. Bathellier, B., Barth, F. G., Albert, J. T. and Humphrey, J. A. C., 2005, "Viscosity-Mediated Motion Coupling Between Pairs of Trichobothria on the Leg of the Spider Cupiennius Salei," J. Comp. Physiol. A, Vol. 191, pp. 733-746. https://doi.org/10.1007/s00359-005-0629-5
  2. Barth, F. G., Humphrey, J. A. C. and Secomb, T. W., 2003, Sensors and Sensing in Biology and Engineering, Springer-Verlag.
  3. Liu, C., 2007, "Micromachined Biomimetic Artificial Haircelll Sensors," Bioinsp. & Biomim. Vol. 2, s162-9. https://doi.org/10.1088/1748-3182/2/4/S05
  4. Park, B. K. and Lee, J. S., 2012, "Dynamic Behavior of Flexible Sensory Hair in an Oscillating Flow," Journal of Mechanical Science and Technology, Vol. 26, No. 4, pp. 1275-1282. https://doi.org/10.1007/s12206-012-0211-3
  5. Laghrouche, M., Montesb, L., Boussey, J., Meunierb, D., Ameur, S. and Adane, A., 2011, "In situ Calibration of Wall Shear Stress Sensor For Micro-Fluidic Application," Procedia Engineering, Vol. 25, pp. 1225-1228. https://doi.org/10.1016/j.proeng.2011.12.302
  6. Ardekani, M. A. and Motlagh, M. M., 2010, "Ordinary Hot-Wire/Hot-Film Method for Spirography Application," Measurement, Vol. 43, pp. 31-38. https://doi.org/10.1016/j.measurement.2009.06.004
  7. Agarwal, V. and Ramachandran, N. C. S., "Design and Development of a Low-Cost Spirometer with an Embedded Web Server," Int. J. Biomedical Engineering and Technology, Vol. 1, No. 4, 2008, pp. 439-452. https://doi.org/10.1504/IJBET.2008.020072
  8. van Putten, A. F. P., van Putten, M. J. A. M., van Putten, M. H. P. M. and van Putten, P. F. A. M., 2002, "Multisensor Microsystem for Pulmonary Function Diagnostics," IEEE Sensor Journal, Vol. 2, No. 6, pp. 636-643. https://doi.org/10.1109/JSEN.2002.807492
  9. Chang, W.-Y., Fang, T.-H., Lin, Y.-C., 2008, "Characterization and Fabrication of Wireless Flexible Physiological Monitor Sensor," Sensors and Actuators A, Vol. 143, pp. 196-203. https://doi.org/10.1016/j.sna.2007.10.071
  10. Choi, S. and Jiang, Z., 2006, "A Novel Wearable Sensor Device with Conductive Fabric and PVDF Film for Monitoring Cardiorespiratory Signals," Sensors and Actuators A, Vol. 128, pp. 317-326. https://doi.org/10.1016/j.sna.2006.02.012
  11. Milenkovic, A. , Otto, C. and Jovanov, E., 2006, "Wireless Sensor Networks for Personal Health Monitoring: Issues and an Implementation," Computer Communications, Vol. 29, pp. 2521-2533. https://doi.org/10.1016/j.comcom.2006.02.011
  12. Chen, N., Tucker, C., Engel, J., M., Yang, Y., Pandya, S., and Liu, C., 2007, "Design and Characterization of Artificial Haircell Sensors for Flow Sensing with Ultrahigh Velocity and Angular Sensitivity," J. of MEMS, Vol.16, No.5, pp. 999-1014. https://doi.org/10.1109/JMEMS.2007.902436
  13. Lee, J. S. and Lee, S. H., 2011, "Flow around a Flexible Plate in a Free Stream," Journal of Mechanical Science and Technology, Vol. 25, No. 2, pp. 379-390. https://doi.org/10.1007/s12206-010-1212-8