• Title/Summary/Keyword: 유연관절매니퓰레이터

Search Result 8, Processing Time 0.039 seconds

Self-Organizing Fuzzy Control of a Flexible Joint Manupulator (유연 관절 매니퓰레이터의 자기 구성 퍼지 제어)

  • 박준형;이시복;선용호;이길랑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.45-50
    • /
    • 1994
  • 최근의 로봇 매니퓰레이터는 고정밀, 고생산성, 유연성 자동화를 추구한다. 이에 따라 매니퓰레이터는 운동 정확성, 고속성, 안정성이 더욱 향상되어야 한다. 특히 매니퓰레이터 관절부의 탄성은 동적 변형 및 진동을 유발함으로써 운동 정확성과 안정성을 현저히 저하시킨다. 이러한 복잡하고 불확실한 구조를 갖는 로봇 시스템의 고속, 정확한 운동 제어를 위해서는 보다 효과적인 고급 제어 기법 및 제어 장치의 개발이 요구된다. 본 연구에서는 이러한 문제에 대한 하나의 대응 방법으로 인간의 지식 처리 방법을 모방한 퍼지제어를 적용하여 그 가능성을 본다.

  • PDF

Self-Organizing Fuzzy Control of a Flexible Joint Manipulator (유연 관절 매니퓰레이터의 자기 구성 퍼지 제어)

  • Park, J.H.;Lee, S.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.92-98
    • /
    • 1995
  • The position control of flexible joint manipulator is investigated by applying the self-organizing fuzzy logic controller (SOC) proposed by Procyk and Mamdani. The SOC is a heuristic rule-based controller and a further extension of an ordinary fuzzy controller, which has a hierachy structrue which consists of an algorithm being identical to a fuzzy controller at the lower ollp and a learning algorithm accomodating the performance evalution and rule modification function at the upper ollp. This form of control can be used in those complex systems which have been too difficult to control or which in the past have had to rely on the experience of a human operator. Even though the significant dynamic coupling of the motors and links on the flexible joint manipulator, the performance of command-following is good by applying the proposed SOC.

  • PDF

Adaptive Neural Network Control of a Flexible Joint Manipulator (유연관절로봇의 적응신경망제어)

  • 구치욱;이시복;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.101-106
    • /
    • 1997
  • This paper proposes a stable adaptive neural network control(NNC) for fixable joint manipulators. For designing the stable adaptive NNC, the flexible system dynamics is separated into fast and slow subdynamics according to singular perturbation concept. For the slow subdynamics, an adaptive NNC is designed to warrant the system stability and NN learning by lyapunov stability criterion. And to stabilize the fast dynamics, derivative control loop is installed. Through numerical simulation, the performance of the proposed NNC was compared to that of an adaptive controller designed based on the knowledge of the system dynamics. The proposed NNC shows much improvement over the conventional adaptive controller.

  • PDF

Robust control design for robots with uncertainty and joint-flexibility (불확실성 및 관절 유연성을 고려한 로봇의 견실제어기 설계)

  • M.C. Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.117-125
    • /
    • 1995
  • An improved robust control law is proposed for uncertain rigid robots. The uncertainty is nonlinear and (possibly fast) time-varying. Therefore, the uncertain factors such as imperfect modeling, friction, payload change, and external disturbances are all addressed. Based on the possible bound of the uncertainty, the controller is constructed. For uncertain flexible-joint robots, some feedback control terms are then added to the proposed robust control law in order to stabilize the elastic vibrations at the joints. To show that the proposed control laws are indeed applicable, the stability study based on Lyapunov function, a singular perturbation approach, and simulation results are presented.

  • PDF

Adaptive control of flexible joint manipulators based on the singular perturbation theory (특이 섭동 이론에 의한 유연성 관절 매니퓰레이터의 적응제어)

  • 김응석;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.7-11
    • /
    • 1991
  • The adaptive control of flexible joint manipulator is the focus of this paper. The full order flexible joint manipulator dynamic system does not allow the determination of a feedback linearization control as for rigid manipulators. This drawback is overcome by a model order reduction based on a singular perturbation strategy. The full order flexible joint manipulator dynamic model is adopted for derivation of the adaptive control law to damp out the elastic oscillations at the joints. It is shown that the joint position error will converge to zero asymptotically and that other signals remain bounded without precise knowledge of parameters of the manipulator and its joint flexibility.

  • PDF

Adaptive control of flexible joint robot manipulators (유연성 관절 로봇 매니퓰레이터 적응 제어)

  • 신진호;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.260-265
    • /
    • 1992
  • This paper presents an adaptive control scheme for flexible joint robot manipulators. This control scheme is based on the Lyapunov direct method with the arm energy-based Lyapunov function. The proposed adaptive control scheme uses only the position and velocity feedback of link and motor shaft. The adaptive control system of flexible joint robots is asymptotically stable regardless of the joint flexibility value. Therefore, the assumption of weak joint ealsticity is not needed. Also, joint flexibility value is unknown. Simulation results are presented to show the feasibility of the proposed adaptive control scheme.

  • PDF

An Adaptive Controller Design and its Application for a Flexible Joints Manipulator (유연성 관절.매니퓰레이터에 대한 적응제어기 설계 및 응용)

  • Rho, Hee-Seok;Kim, Eung-Seok;Yi, Keon-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.391-393
    • /
    • 1992
  • This paper proposes an adaptive control system using a 80286 microprocessor-based system and DC servo motors for the control of flexible joint manipulator. In this paper, we construct the controller based on a singular perturbation strategy damping out the elastic oscillations at the joints. we added to the controller the compensator for damping the joint and the term for decreasing the position error between the actuator and the link in order to improve the asymptotical convergence of the position of the link. It is shown that the implementation of this control algorithm can be practical.

  • PDF

A Study on the Adaptive PD Controller for robot manipulator with Elastic Joints (유연성 관절 로보트 매니퓰레이터에 대한 적응 PD 제어기에 관한 연구)

  • Kang, Ji-Won;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.394-396
    • /
    • 1992
  • This note is concerned with the point to point control of manipulators having elastic joints. We present a PD control algorithm which is adaptive with respect to the gravity and elastic parameters of robot manipulators. While the conventional control law is used, a new adaptive law is used to improve the performance. The proposed controller is shown to be stable. It is Shown that steady-state position error converges to zero through some simulations concerning the manipulator with three revolute elastic joints.

  • PDF