• Title/Summary/Keyword: 유압시스템

Search Result 735, Processing Time 0.023 seconds

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.

Life Prediction of Elastomeric U Seals in Hydraulic/Pneumatic Actuators Using NSWC Handbook (NSWC를 활용한 유공압 액추에이터 U 형 씰의 수명예측)

  • Shin, Jung Hun;Chang, Mu Seong;Kim, Sung Hyun;Jung, Dong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1379-1385
    • /
    • 2014
  • Even the rough prediction of the product test time before the lifetime test of mechanical component begins would be of use in estimating cost and deciding how to keep up with the test. The reliability predictions of mechanical components are difficult because failure or degradation mechanisms are complicated, and few plausible databases are available for lifetime prediction. Therefore, this study conducted lifetime predictions of elastomeric U seals that were respectively installed in a hydraulic actuator and a pneumatic actuator using lifetime models and a field database based on failure physics and an actual test database obtained from the NSWC handbook. To validate the results, the predicted failure rates were compared with the actual lifetime test results acquired in the lab durability tests. Finally, this study discussed an engineering procedure to determine the coefficients in the failure rate models and analyzed the sensitivity of each influential parameter on the seal lifetime.

A Study on Mission Profile and Determination of Durability Test Parameters in the Hydraulic Clutch System (Hydraulic Clutch System의 Mission Profile 및 내구시험모수 결정에 관한 연구)

  • Lee, Sang-Cheon;Hur, Man-Dae;Lee, Chun-Gon;Kim, Jae-Young;Kang, Ji-Woo;Lee, Hong-Bum;So, Yoon-Sub;Lee, Jong-Hyung;Min, Byung-Gil;Lee, Jae-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.521-528
    • /
    • 2009
  • One of reliability measurements of vehicle is estimated by driving mileage but the reliability of component, such as an hydraulic clutch system, is defined from the number of successful operational cycle. Relationship between these reliability measurement variables(mileage and cycle) should be examined first of all in the reliability estimation of components. Relationship between mileage and cycles is commonly known as linear function. However, the gradient depends on the operational environmental condition. Therefore, estimation of mission profile variable should be done with correlation analysis at the same time. In this paper, we derive mission profile variable of an hydraulic clutch system by field vehicle test and suggest the determination process of durability test parameters of CMC(Clutch Master Cylinder) with mission profile variable.

Shape Design of the 3-Way Valve used in Marine Diesel Engines (LDCL JWCS) by CFD Analysis (유동해석을 통한 선박용 디젤엔진(LDCL JWCS)의 3-Way Valve 형상 설계)

  • Hwang, Gi Ung;Kwak, Hyo Seo;Kim, Jae Yeol;Eom, Tae Jin;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1077-1084
    • /
    • 2017
  • Camshaft engines designed for constant engine loads have been applied to existing marine diesel engines. However, due to environmental regulations, electro-hydraulic servo mechanisms, which have a loaddependent cylinder liner jacket water cooling system (LDCL-JWCS), have been recently developed to individually control the temperature of the cylinders depending on the engine load. In this system, the 3-way valve, which prevents low temperature corrosion by reducing the temperature difference between the upper and lower parts of the cylinder, has been employed, but the outlet mass flow of the existing valve is low. In this study, the design of the internal shape of the 3-way valve was performed by analyzing the effects of the design parameters of the valve shape on the performance (i.e., the outlet mass flow rate and temperature). The proposed model was verified by comparing its performance to that of existing marine diesel engine valves.

A Study on Dynamic Characteristics of Hydraulic Motor Brake System with Counter Balance Valve (카운터 밸런스 밸브를 내장한 유압 모터 브레이크 시스템의 동특성)

  • Yun, So-Nam;Lee, Ill-Yeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.214-219
    • /
    • 1993
  • Counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. These problems may hurt system safety and driver's conformability. Nevertheless, studies on dynamic characteristics of hydraulic system including counter balance valve are very rare, so further accumulation of research results are required. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. The equations obtained in the preceding process include some parameters that must be got experimentally. Flow coefficients of valve and choke are the most significant ones among the parameters. So these parameters are obtained experimentally in this study, and experimental equations obtained from the experimental data were used for numerical calculation. The equations were analysed by numerical integration using Runge-Kutta method, because the equations contain various nonlinear terms. From the numerical analysis, it was verified that the dynamic response of counter balance valve and pressure variation at each elements can be estimated very easily. So the analysing method developed in this study enabled very easy estimating the relation between the performances of counter balance valve and various physical parameters related to the valve. Conclusively, it is said that the results obtained in this study can be used very usefully to develop a new type counter balance valve or to apply the valve to actual hydraulic system for various industrial equipments.

  • PDF

Electronic-hydraulic Hitch Control System for Agricultural Tractor -Draft Control- (트랙터의 전자유압식(電子油壓式) 히치 제어(制御) 시스템에 관한 연구(硏究)(II) -견인력제어(牽引力制御)-)

  • Yoo, S.N.;Ryu, K.H.;Yun, Y.D.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.229-241
    • /
    • 1989
  • The purposes of this study were to develop an electronic-hydraulic draft control system for tractor implements, to investigate the control performance of the system and the possibility of adaptation to the conventional tractor. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in draft control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. Moreover, the effects of filtering signals from draft sensor were also investigated. The following conclusions were derived from the study; 1. In draft control, there were hunting problems in controlling the implement without filtering the draft signals. Filtering was performed by a control program of electronic controller and the control performance and stability of the system were improved significantly. 2. For the draft control system operated on on-off control mode, draft was controlled within ${\pm}27-{\pm}55kg_f$ to the reference draft when the hydraulic flow rates were 5-15 l/min. For the draft control system operated on PWM control, draft was controlled within ${\pm}27kg_f$ to the reference draft regardless of hydraulic flow rates. 3. In the frequency responses of the draft control system, control performance on PWM control mode was not better than on on-off control mode because of characteristics of hydraulic valve and drafe sensor. As the hydraulic flow rates increased for the system operated on on-off control mode, the corner frequency of amplitude attenuation increased, but the corner frequency of phase-angle change remained nearly the same. But, the system was unstable beyond the frequency of 3.1 rad/s. 4. The electronic-hydraulic hitch control system developed in this study showed superior control performance, stability and convenience compared to conventional mechanical-hydraulic hitch control system. It is considered to be a superior replacement for the conventional mechanical-hydraulic hitch control system.

  • PDF

A Study on Analysis Technique for Solenoid Valve Applicable to Military Vehicle Transmission (군용차량 변속기에 적용할 수 있는 솔레노이드밸브 해석기술에 관한 연구)

  • Choi, Yun-Yong;Hong, Jung-Pyo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.29-34
    • /
    • 2015
  • Electronic of military vehicle that had relied on pure machinery system is ongoing. A large part of electronic of small-sized military vehicle has been already commercialized, which will expand to large-sized military vehicle field. Design of solenoid valve for automatic transmission is significantly important for stable driving performance of military vehicle. This research aims to develop simulation method which is capable of predicting performance of solenoid valve quantitatively according to its variation of ATF temperature. The research has been conducted in line with Maxwell, a magnetic field analysis program, and AMESim, a hydraulic analysis program. After simulation, it turned out to have been very similar to the test result in temperature range which excludes high temperature (over $120^{\circ}C$) and extremely low temperature (below $-20^{\circ}C$).

Development of Motion Control Techniques and Sea Trials of The Test Ship $\ulcorner$NARAE$\lrcorner$ (시험선 $\ulcorner$나래$\lrcorner$의 자세 제어 기술 개발 및 실해역 시험)

  • J.W. Kim;Y.G. Kim;G.J. Lee;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.26-37
    • /
    • 1998
  • In this study, the motion control techniques allied to the test ship NARAE are summarized and the results of sea trials are resented. NARAE adopted a hybrid hull form with lower hull and submerged foils. This type of ship has a substantial instability in heave, pitch and roll modes at the foil-borne stage due to little restoring force, so an active control is indispensable to keep the stability. 4-hydraulic actuators with servo valves were installed to drive foils, and several sensors were used to measure the motion of the ship. PID controller was adopted as a motion controller, and for the real-time control, Pentium-class industrial PC was used. Sea trials including take-off, landing, and banked turn maneuvering were carried out for a period of over 3 months and quite satisfactory results were obtained.

  • PDF

Cable Tension Measurement of Long-span Bridges Using Vision-based System (영상처리기법을 이용한 장대교량 케이블의 장력 측정)

  • Kim, Sung-Wan;Cheung, Jin-Hwan;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • In a long-span bridge, the cables are important elements that support the load of the bridge. Accordingly, the cable tension is a very important variable in evaluating the health and safety of the bridge. The most popular methods of estimating the cable tensions are the direct method, which directly measures the cable stresses using load cells, hydraulic jacking devices, etc., and the vibration method, which inverses the tensions using the cable shapes and the measured dynamic characteristics. Studies on the use of the electromagnetic (EM) sensor, which detects the magnetic field variations caused by the change in the stress of the steel in the cable, are increasing. In this study, the lift-off test, the EM sensor, and the vibration method (Vision-based System and Accelerometer) were used to measure cable tension, and their results were compared and analyzed.

The Theory of Load Estimation Method and Case Study of Hydraulic Breaker for Rock Drilling (진동기반 하중 추정기법의 이론 및 암반 천공용 유압 브레이커 적용사례)

  • Kim, Dae-ji;Cho, Jung-Woo;Oh, Joo-Young;Chung, Jintai;Song, Changheon
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.135-147
    • /
    • 2019
  • This paper introduced a impact load estimation method by examining vibration transfer path analysis (TPA). The theoretical background and the load quantification procedure are explained, and a case study of hydraulic breaker is reported. We explained the merits and limitations of the load estimation method of TPA, and improvement method was suggested through case analyses of drilling equipment. The necessity of R&D of load-estimation technology was discussed. A new strategy for developing new techniques for impact load measurement was proposed.