• Title/Summary/Keyword: 유압로봇

Search Result 116, Processing Time 0.024 seconds

The use of load pressure feedback in designing the high performance electro-hydraulic speed controller for large inertia system (대부하 전기유압시스템의 부하압력 피이드백에 관한 연구)

  • 김영대;이대옥;심재운
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.358-363
    • /
    • 1987
  • It is widely noted that pressure feedback systems have been devised to damp the fluid resonance effectively in precision speed control-for large inertia system. A compensation technique preserving the natural output disturbance discrimination characteristics at lower frequencies is proposed The load pressure across positive displacement acceleration. The technique involves feeding back load differential pressure, sensed by pressure transducers, though a simple analog compensatory circuit (high pass filter). The effectiveness of the damping is determined by the filter time donstant and loop gain. Nonlinear total hydraulic simulation results verify the possibility of linear model predictions of extending the closed loop bandwidth beyond the uncompensated frequency.

  • PDF

Effect of solenoid valves on the response characteristics of a hydraulic position-control system (솔레노이드 밸브가 유압위치제어 시스템의 응답특성에 미치는 영향)

  • 장효환;안병홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.364-369
    • /
    • 1987
  • It has recently shown that a solenoid valve can be utilized in a hydraulic position-control system by discontinuous control methods. The objective of this study is to investigate the effects of solenoid valves on the response characteristics of a hydraulic position-control system by applying two kinds of discontinued control methods i.e., Simple On-Off (SOF) and Pusating On-Off(POF) controls. Three types of solenoid valves i.e. low-frequency, closed-center type (LF/C), high-frequency, closed-center type (HF/C), low-frequency, tandem-center type(LF/T) were used in this study. Effects of loading conditions and control parameters on the response characteristics were experimentally examined and compared each other. Pressure transients within the actuator were also studied.

  • PDF

A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 유압서보시스뎀의 추적제어)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.228-228
    • /
    • 2000
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require an accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller Parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is obtained through a series of experiments for the various types of input while applying disturbances to the cylinder. .and performance of this controller was compared with that of PID, PD controller. As a experimental result, it can be proven that the position tracking performance of the neuro-fuzzy is better than that of PID and PD controller.

  • PDF

A Study on the Characteristics Improvement of Electro-Hydraulic Servo System Controlled by High Speed Solenoid Valve (고속전자밸브로 제어되는 전기.유압 서보시스템의 특성 개선에 관한 연구)

  • Park, Seong-Hwan;Lee, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.288-294
    • /
    • 2001
  • In this study, a new PWM method considering the actuation delay of high speed solenoid valves is proposed to improve the response characteristics of electro hydraulic servo systems controlled by high speed solenoid valves. In addition, the decision method for the system gain, the basic period of PWM, and the sampling time is proposed, Since the conventional system controlled by high speed solenoid valves is too slow to apply this method, a high speed driving circuit(Quick-Drive) which enables rapid switching of the high speed solenoid valve at a high speed sampling mode is applied to realize this method. The experimental result shows that it is possible to achieve precision and quiet control without occurrence of limit cycle and wide range dead band.

  • PDF

Design of Torque Servo for Impedance Control of Double Vane Rotary Hydraulic Actuator System (더블 베인 회전형 유압 구동시스템의 임피던스 제어를 위한 토크 서보 설계)

  • Kim, Seon-Min;Choi, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • In order to achieve a force controller with high performance, an accurate torque servo is required. However, the precise torque servo for a double vane rotary actuator system has not been developed till now, due to many nonlinear characteristics and system parameter variations. In this paper, the torque servo structure for the double vane rotary actuator system is proposed based on the torque model. Nonlinear equations are set up using dynamics of the double vane rotary hydraulic actuator system. Then, to derive the torque model, the nonlinear equations are linearized using a taylor series expansion. Both effectiveness and performance of the design of torque servo are verified by torque servo experiments and applying the suggested torque model to an impedance controller.

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.

HASEL Actuator Study for Tactile Feedback Device (촉감 피드백을 위한 유압증폭자기치유형 정전식 액추에이터 연구 개발)

  • Song, Kahye
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2021
  • Attempts are being made to provide various tactile feedbacks to user. In particular, a variety of soft actuators are being inserted into the tactile feedback device to give a more flexible, soft and strong stimulation. In this study, a basic study was performed to utilize a hydraulically amplified self-healing electrostatic (HASEL) actuator as a tactile feedback actuator. The HASEL actuator showed great displacement and force with a simple circuit configuration. In particular, by making the actuator in a circular shape, the angle was reduced and the electrode was arranged in a ring shape to maximize the displacement of the central part. As a result, the HASEL actuator showed a displacement difference according to the input waveform. In addition, in order to use it safely as an actuator for tactile feedback, we covered the surface with silicone and confirmed that the actuator works well. Using these actuators, it will be possible to manufacture a lightweight, portable tactile feedback device.

Development of an Electro-hydraulic Soft Zipping Actuator with Self-sensing Mechanism (자가 변위 측정이 가능한 전기-유압식 소프트 지핑 구동기의 개발)

  • Lee, Dongyoung;Kwak, Bokeon;Bae, Joonbum
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.79-85
    • /
    • 2021
  • Soft fluidic actuators (SFAs) are widely utilized in various areas such as wearable systems due to the inherent compliance which allows safe and flexible interaction. However, SFA-driven systems generally require a large pump, multiple valves and tubes, which hinders to develop a miniaturized system with small range of motion. Thus, a highly integrated soft actuator needs to be developed for implementing a compact SFA-driven system. In this study, we propose an electro-hydraulic soft zipping actuator that can be used as a miniature pump. This actuator exerts tactile force as a dielectric liquid contained inside the actuator pressurized its deformable part. In addition, the proposed actuator can estimate the internal dielectric liquid thickness by using its self-sensing function. Besides, the electrical characteristics and driving performance of the proposed system were verified through experiments.

Joint Position Control using ZMP-Based Gain Switching Algorithm for a Hydraulic Biped Humanoid Robot (유압식 이족 휴머노이드 로봇의 ZMP 기반 게인 스위칭 알고리즘을 이용한 관절 위치 제어)

  • Kim, Jung-Yup;Hodgins, Jessica K.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1029-1038
    • /
    • 2009
  • This paper proposes a gain switching algorithm for joint position control of a hydraulic humanoid robot. Accurate position control of the lower body is one of the basic requirements for robust balance and walking control. Joint position control is more difficult for hydraulic robots than it is for electric robots because of an absence of reduction gear and better back-drivability of hydraulic joints. Backdrivability causes external forces and torques to have a large effect on the position of the joints. External ground reaction forces therefore prevent a simple proportional-derivative (PD) controller from realizing accurate and fast joint position control. We propose a state feedback controller for joint position control of the lower body, define three modes of state feedback gains, and switch the gains according to the Zero Moment Point (ZMP) and linear interpolation. Dynamic equations of hydraulic actuators were experimentally derived and applied to a robot simulator. Finally, the performance of the algorithm is evaluated with dynamic simulations.

Walking Control Using Phase Plane of a Hydraulic Biped Humanoid Robot (위상평면을 이용한 유압식 이족 휴머노이드 로봇의 보행제어)

  • Choi, Dong-Il;Kim, Jung-Hoon;Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.269-276
    • /
    • 2011
  • This paper proposes a novel control method using phase plane for a hydraulic biped humanoid robot. In biped walking control, it is much more difficult to control the posture of a biped robot in the coronal plane because the supporting area formed by the both feet in the coronal plane is much narrower than that of the sagittal plane. When the biped robot walks stably, the phase portrait of the pelvis in the coronal plane makes an elliptical shape. From this point of view, we develop an ankle torque controller and a foot placement controller for tracking the desired phase portrait during walking. We design these controllers by using simulations of a simplified compass gait biped model to regulate the desired phase portrait of pelvis. The effectiveness of the proposed control method is proved through full-body dynamic walking simulations and real experiments of the SARCOS hydraulic biped humanoid.