DOI QR코드

DOI QR Code

HASEL Actuator Study for Tactile Feedback Device

촉감 피드백을 위한 유압증폭자기치유형 정전식 액추에이터 연구 개발

  • Song, Kahye (Center for Intelligent & Interactive Robotics KIST)
  • Received : 2020.11.04
  • Accepted : 2020.11.27
  • Published : 2021.02.26

Abstract

Attempts are being made to provide various tactile feedbacks to user. In particular, a variety of soft actuators are being inserted into the tactile feedback device to give a more flexible, soft and strong stimulation. In this study, a basic study was performed to utilize a hydraulically amplified self-healing electrostatic (HASEL) actuator as a tactile feedback actuator. The HASEL actuator showed great displacement and force with a simple circuit configuration. In particular, by making the actuator in a circular shape, the angle was reduced and the electrode was arranged in a ring shape to maximize the displacement of the central part. As a result, the HASEL actuator showed a displacement difference according to the input waveform. In addition, in order to use it safely as an actuator for tactile feedback, we covered the surface with silicone and confirmed that the actuator works well. Using these actuators, it will be possible to manufacture a lightweight, portable tactile feedback device.

Keywords

References

  1. W. R. Sherman and A. B. Craig, Understanding virtual reality: Interface, application, and design, 1st ed., Morgan Kaufmann Publishers Inc., 2002, [Online], https://www.amazon.com/Understanding-Virtual-Reality-Interface-Application/dp/1558603530.
  2. K. Song, S. H. Kim, S. Jin, S. Kim, S. Lee, J.-S. Kim, J.-M. Park, and Y. Cha, "Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system," Scientific Reports, vol. 9, no. 1, pp. 1-8, 2019, DOI: 10.1038/s41598-019-45422-6.
  3. M. Kim, C. Jeon, and J. Kim, "A study on immersion and presence of a portable hand haptic system for immersive virtual reality," Sensors, vol. 17, no. 5, pp. 1141, 2017, DOI: 10.3390/s17051141.
  4. D. Pyo, S. Ryu, B.-K. Han, and D.-S. Kwon, "Development of a New Miniature Actuator providing both Kinesthetic and Vibrotactile Feedback for Haptic Interface," Journal of Korea Robotics Society, vol. 8, no. 3, pp. 143-149, Sept., 2013, DOI: 10.7746/jkros.2013.8.3.143.
  5. T. Hachisu and M. Fukumoto, "SpiroSurface: A Repulsive and Attractive Force Display for Interactive Tabletops Using a Pneumatic System," IEEE Computer Graphics and Applications, vol. 38, no. 4, pp. 54-70, 2018, DOI: 10.1109/Mcg.2018.042731659.
  6. M. Benali-Khoudja, M. Hafez, J.-M. Alexandre, and A. Kheddar, "Tactile interfaces: a state-of-the-art survey," Int. Symposium on Robotics, vol. 31, pp. 23-26, 2004, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.2158.
  7. M. Culjat, C.-H. King, M. Franco, J. Bisley, W. Grundfest, and E. Dutson, "Pneumatic balloon actuators for tactile feedback in robotic surgery," Industrial Robot, vol. 35, no. 5, pp. 449-455, 2008, DOI: 10.1108/01439910810893617.
  8. M. Grunwald, Human Haptic Perception: Basics and Applications, 1st ed., Birkhauser Basel, 2008, DOI: 10.1007/978-3-7643-7612-3.
  9. I. Sarakoglou, N. Garcia-Hernandez, N. G. Tsagarakis, and D. G. Caldwell, "A high performance tactile feedback display and its integration in teleoperation," IEEE Transactions on Haptics, vol. 5, no. 3, pp. 252-263, 2012, DOI: 10.1109/TOH.2012.20.
  10. J. H. Killebrew, S. J. Bensmaia, J. F. Dammann, P. Denchev, S. S. Hsiao, J. C. Craig, and K. O. Johnson, "A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli," Journal of Neuroscience Methods, vol. 161, no. 1, pp. 62-74, 2007, DOI: 10.1016/j.jneumeth.2006.10.012.
  11. H. A. Sonar and J. Paik, "Soft pneumatic actuator skin with piezoelectric sensors for vibrotactile feedback," Frontiers in Robotics and AI, vol. 2, 2016, DOI: 10.3389/frobt.2015.00038.
  12. J. H. Low, N. Cheng, P. M. Khin, N. V. Thakor, S. L. Kukreja, H. L. Ren, and C. H. Yeow, "A bidirectional soft pneumatic fabric-based actuator for grasping applications," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, pp. 1180-1186, 2017, DOI: 10.1109/IROS.2017.8202290.
  13. S. Mun, S. Yun, S. Nam, S. K. Park, S. Park, B. J. Park, J. M. Lim, and K.-U. Kyung, "Electro-active polymer based soft tactile interface for wearable devices," IEEE Transactions on Haptics, vol. 11, no. 1, pp. 15-21, 2018, DOI: 10.1109/TOH.2018.2805901.
  14. R. K. Cheedarala, J.-H. Jeon, C.-D. Kee, and I.-K. Oh, "Bio-Inspired All-Organic Soft Actuator Based on a π-π Stacked 3D Ionic Network Membrane and Ultra-Fast Solution Processing," Advanced Functional Materials, vol. 24, no. 38, pp. 6005-6015, 2014, DOI: 10.1002/adfm.201401136.
  15. I. Koo, K. Jung, J. Koo, J.-d. Nam, Y. Lee, and H. R. Choi, "Wearable Tactile Display Based on Soft Actuator," 2006 IEEE International Conference on Robotics and Automation, 2006 (ICRA 2006), Orlando, FL, USA, 2006, DOI: 10.1109/ ROBOT.2006.1642033.
  16. A. Miriyev, K. Stack, and H. Lipson, "Soft material for soft actuators," Nature Communications, vol. 8, no. 1, pp. 1-8, Sept., 2017, DOI: 10.1038/s41467-017-00685-3.
  17. J. C. Yeo, H. K. Yap, W. Xi, Z. Wang, C.-H. Yeow, and C. T. Lim, "Flexible and stretchable strain sensing actuator for wearable soft robotic applications," Adv. Mater. Tech., vol. 1, no. 3, 2016, DOI: 10.1002/admt.201600018.
  18. F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, "Soft robotics for chemists," Angew. Chem., vol. 123, no. 8, pp. 1930-1935, 2011, DOI: 10.1002/ange.201006464.
  19. R. V. Martinez, J. L. Branch, C. R. Fish, L. Jin, R. F. Shepherd, R. M. D. Nunes, Z. Suo, and G. M. Whitesides, "Robotic tentacles with three-dimensional mobility based on flexible elastomers," Advanced Functional Materials, 2013, DOI: 10.1002/adma.201203002.
  20. H.-J. Cha and B.-J. Yi, "Design of a new 4-DOF soft finger mechanism," Journal of Korea Robotics Society, vol. 3, no. 4, pp. 315-322, Dec., 2008, [Online], https://www.koreascience.or.kr/article/JAKO200823736027649.page.
  21. N. Oh, H. Lee, and H. Rodrigue, "Manufacturing 2DOF Inflatable Joint Actuator by Pneumatic Control," Journal of Korea Robotics Society, vol. 13, no. 2, pp. 92-96, Jun., 2018, DOI: 10.7746/jkros.2018.13.2.092.
  22. N. Kellaris, V. G. Venkata, G. M. Smith, S. K. Mitchell, and C. Keplinger, "Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation," Science Robotics, vol. 3, no. 14, 2018, DOI: 10.1126/scirobotics.aar3276.
  23. E. Acome, S. K. Mitchell, T. G. Morrissey, M. B. Emmett, C. Benjamin, M. King, M. Radakovitz, and C. Keplinger, "Hydraulically amplified self-healing electrostatic actuators with muscle-like performance," Science, vol. 359, no. 6371, pp. 61-65, 2018, DOI: 10.1126/science.aao6139.
  24. J. M. Crowley, "Electrostatic fundamentals," Handbook of Electrostatic Processes, 1st ed., CRC Press, 2018, DOI: 10.1201/9781315214559.
  25. K. Song, H. Lee, and Y. Cha, "A V-Shaped actuator utilizing electrostatic force," Actuators, vol. 7, no. 2, p. 30, 2018, DOI: 10.3390/act7020030.