• Title/Summary/Keyword: 유압관로

Search Result 43, Processing Time 0.03 seconds

Frequency Response Characteristics of Automotive Hydraulic Pipelines (자동차용 유압관로의 주파수 응답 특성)

  • Kim, Do-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.177-182
    • /
    • 2007
  • In this paper, automotive hydraulic pipeline systems are modeled in which a straight blocked pipe, two pipes with sudden expansion or contraction are connected in series and terminated with a chamber. The frequency response characteristics of these composite pipeline systems are investigated experimentally. The theoretical analysis for various pipe configurations is base on transfer matrix method with frequency dependent viscous friction distributed parameter pipeline model. The gain and phase of transfer functions are included for comparison with experimental results. There is close agreement between the results of experimental and theoretical determination of pressure response in automotive hydraulic pipeline systems.

Method for Reduction of Pressure Ripples using the Parallel Pipeline in Fluid Pipeline (분지를 이용한 유압관로계의 압력맥동 저감 방안)

  • 이규원;장주섭;김경훈;윤영환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.299-302
    • /
    • 1997
  • The pressure ripples are inevitabilitily generated by a fluctuation of flow rate caused pump mechanism, which occur noises, vibrations, and affect a control performance in tluid pipeline. The method for reduction of pressure ripples has been normally used a accumulator which is installed near the pump generating the pressure ripples. This paper introduces the parallel pipeline as a method to reduce pressure ripples in tluid pipeline, and confirms the usefulness of it in reducing the pressure ripples as compared with the fluid pipeline with a accumulator using AMESim(Advanced Modeling Environment for Simulations) Software.

  • PDF

Dynamic Respeonse of Hydraulic Pipe Lines with a Relative Small Diameter (직경이 작은 유압관로에서의 동특성)

  • 유영태
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.38-44
    • /
    • 1999
  • This paper primarily directed toward analyzing the frequency response in hydraulic pipe lines with a small diameter. The exact solution to the frequency response is obtained by using the complicated transfer function. The discrepancy with the exact and the approximate is small so the approximation solution is adopted to compare the experimental results with the theoretical analysis. In this experiment the input frequency was generated by the frequency generator with the ball valve and speed controller. In order to compare the theoretical were forms with the experimental ones the trace obtained from the oscilloscope is photographed, The diameter the length of lines and input pressure amplitude are varied to investigate their effects,. the experiment results show that th values of dimensionless parameter are very affected to the phase delay and guide response time in the design of pressure manifold to measure the pressure of hydraulic pipelines.

  • PDF

A Characteristics of pressure Propagation According to Frequency Changes in a Hydraulic Pipeline (유압관로의 주파수변화 따른 압력전파특성)

  • 유영태;나기대;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • In this paper, an oil hydraulic pipeline is terminated by both rotary sinusoidal flow generator at upstream oriffice at down stream. The pulsating pressure wave from generated by the rotary sinusoidal flow generator, is measured by using sensor. In the analysis of this paper, a component of the fundamental frequency is obtained by using Laplace transformation.. The experimental and analytical results make clear that (1) viscosity is significant role in hydraulic pipe. (2) When pulsating frequency is matched with the natural frequency, resonance frequency occured periodically. According to the study proposed here, dynamic pressure in a circular oil pipe is expressed in propagation of pressure wave with respect to frequency and Bessel function. The resonance at oil temperature $20^{\circ}$$0^{\circ}C$ in this study. The abrupt change of gain value is due to effect of resonance frequency. The results of experiment are compared with the calculated results, and agreement of both results is fairly good.

A Characteristics of Impedance Propagation by the Unsteady Flow in a Hydraulic Pipeline (유압관로의 비정상유동에 따른 임피던스 전달특성)

  • Mo Yang-Woo;Yoo Young-Tae;Na Gee-Dae;Kim Ji-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.48-55
    • /
    • 2004
  • Design for quite operation of fluid power system requires the understanding of noise and vibration characteristics of the system. This paper presents a dynamic response of design of hydraulic circuit. Experimental investigations on the attenuation of pressure ripple in automotive power steering hydraulic pipe line is examined. Also, a mathematical model of hydraulic pipe is p개posed to support a design of the hydraulic circuit. and the impedance characteristics of pressure ripple is analyzed. It is experimentally shown that power steering hydraulic pipe attenuates pressure ripple with high frequency.

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • 정용길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.127-130
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model (분포정수계 유압관로 모델의 동특성 해석)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

Analysis of Pressure Fluctuations in Oil Hydraulic Pipe Network (유압 관로망에서의 압력 맥동 해석)

  • 이일영;정용길;양경욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.152-158
    • /
    • 1997
  • An analyzing method for pressure fluctuations in oil hydraulic pipe network was developed in this study. The object pipe network has multi-branch configuration, and the pipelines of it are composed of steel tubes, flexible hoses. Also, accumulators, orifices and lumped oil volume components are attached on it. Transfer matrix method, in other words impedance method, was used for the analysis. The reliability and usefulness of the analyzing method were confirmed by investigation computed results and experimental results got in this study.

  • PDF

Propagation Characteristics of Pressure Pulse of Unsteady Flow in n Hydraulic Pipeline (유압관로에서 비정상유동의 압력전파특성)

  • Yu, Yeong-Tae;Na, Gi-Dae;Kim, Ji-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • Flow of fluid has been studied in various fields of fluid engineering. To hydraulic engineers, the unsteady flow such as pulsation and liquid hammering in pipes has been considered as a serious trouble. So we are supposed to approach the formalized mathematical model by using more exact momentum equation for fluid transmission lines. Most of recent studies fur pipe line have been studied without considerations of variation of viscosity and temperature, which are the main factors of pressure loss causing the friction of fluid inside pipe line. Frequency response experiments are carried out with use of a rotary sinusoidal flow generator to investigate wave equation take into account viscosity and temperature. But we observed that measured value of gains are reduced as temperature increased. And it was respectively observed that the measured value of gains are reduced and line width of gain is broadened out, when temperature was high in the same condition. As we confessed, pressure loss and phase delay are closely related with the length, diameter and temperature of pipe line. In addition, they are the most important factors, when we decide the momentum energy of working fluid.

A Study on Fluid Thansient Accommpanying Cilumn Separation in Oil Hydraulic Pipeline -Investigation on Two-Step Pressure Rise (유압 관로계에서 액주분리를 수반하는 유체과도현상에 관한 연구 -2단입력 상승현상에 관하여-)

  • 염만오;이진걸;이일영;김현기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.984-991
    • /
    • 1988
  • Liquid column separation occurs when the valve on the pipeline is closed rapidly in an oil hydraulic system. In this case two-step pressure rise is sometimes observed in a comparatively short pipeline. In this study the two-step pressure rise phenomenon was investigated experimentally and theoretically. The experiments showed that maximum pressure values during two-step pressure rise might exceed extremely the values computed by the theory of rigid-liquid-column separation. So the two-step pressure rise phenomenon appears one of important factors of pipe strength design. From the theoretical considerations based on the experimental and numerical results, the mechanism of two-step pressure rise phenomenon could be explained clearly.