• Title/Summary/Keyword: 유사 입자

Search Result 709, Processing Time 0.026 seconds

Loading Effects on Thermal Conductivity of Soils: Particle-Scale Study (하중 조건이 지반의 열전도도에 미치는 영향: 입자 스케일에서의 연구)

  • Lee, Jung-Hwoon;Choo, Jin-Hyun;Yun, Tae-Sup;Lee, Jang-Guen;Kim, Young-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.77-86
    • /
    • 2011
  • The stress condition mainly dominates the thermal conductivity of soils whereas governing factors such as unit weight and porosity suggested by empirical correlations are still valid. The 3D thermal network model enables evaluation of the stress-dependent thermal conductivity of particulate materials generated by discrete element method (DEM). The relationship among dominant factors is analyzed based on the coordination number and porosity determined by stress condition and thermal conductivity of pore fluid. Results show that the variation of thermal conductivity is strongly attributed to the enlargement of inter-particle contact area by loading history and pore fluid conductivity. This study highlights that the anisotropic evolution of thermal conductivity depends on the directional load and that the particle-scale mechanism mainly dictates the heat transfer in soils.

Recent Progress in Inorganic Nanoparticles with Enzyme-Mimetic Activities and Their Applications to Diagnosis and Therapy (효소 모사 활성 무기 나노입자의 진단 및 치료 응용연구 동향)

  • Lee, Junsoo;Kim, Taeyeon;Kim, Bong-Geun;Na, Hyon Bin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.352-359
    • /
    • 2020
  • Inorganic nanoparticles have been actively applied to the bio-medical field by utilizing their physical properties derived from the nanometer size regime, such as optical and magnetic properties. In recent years, diagnostic detection methods have been developed by employing chemical activity, particularly enzyme-mimetic activities, as well as physical properties of inorganic nanoparticles. After the initial study of verifying the enzyme-mimetic activities, the scope of research has been expanded to the direct use of therapeutic effects with active control of activity through understanding of the catalytic mechanism. This review summarizes recent research works on the active control of the enzyme-mimetic activities and newly demonstrated applications on the diagnosis and treatment of diseases, focusing on inorganic nanoparticles, so-called "nanozyme". It is expected that the enzyme-mimetic activity of inorganic nanoparticles will be combined with their inherent physical properties, leading to the development of new diagnostic and therapeutic methods.

Shear Strength Characteristics of Geo - Soluble - Materials (용해재료가 포함된 지반의 전단강도 특성)

  • Tran, M. Khoa;Park, Jung-Hee;Byun, Yong-Hoon;Shin, Ho-Sung;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.17-25
    • /
    • 2011
  • A fabric of soil media may change due to certain factors such as dissolution of soluble particles, desiccation, and cementation. The fabric changes affect the mechanical behavior of soils. The purpose of this study is to investigate the effects of geo-material dissolution on shear strength. Experiments and numerical simulations are carried out by using a conventional direct shear and the discrete element method. The dissolution specimens are prepared with different volumetric salt fraction in sand soils. The dissolution of the specimens is implemented by saturating the salt-sand mixtures at different confining stresses in the experimental study or reducing the sizes of soluble particles in the numerical simulations. Experimental results show that the angle of shearing resistance decreases with the increase in the soluble particle content and the shearing behavior changes from dilative to contractive behavior. The numerical simulations exhibit that macro-behavior matches well with the experimental results. From the microscopic point of view, the particle dissolution produces a new fabric with the increase of local void, the reduction of contact number, the increase of shear contact forces, and the anisotropy of contact force chains compared with the initial fabric. The shearing behavior of the mixture after the particle dissolution is attributed to the above micro-behavior changes. This study demonstrates that the reduction of shearing resistance of geo-material dissolution should be considered during the design and construction of the foundation and earth-structures.

Monte Carlo Simulation of Absorbed Energy by Gold Nano-Particles for Proton (양성자에 대한 금 나노입자의 밀도에 따른 흡수 에너지의 몬테카를로 전산모사)

  • Kwon Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Proton therapy is known for its superior treatment method due to Bragg peak. To enhance the therapeutic effects of protons, research has been conducted on distributing gold nanoparticles within tumors to increase the absorbed dose. While previous studies focused on handling gold nanoparticles at micrometer and nonometer scale, this study proposes a method to computationally estimate the effect of gold nanoparticles at the millimeter scale. The Geant4 toolkit was applied to computational modeling. Assuming a uniform distribution of water, similar to the human body, and gold nanoparticles, the concentration of gold nanoparticles was adjusted using density ratios. When the density ratio was 5%, the gain in absorbed energy due to gold nanoparticles was nearly twice that of the pure water phantom at the Bragg peak. As the density ratio increased, the gain in absorbed energy linearly increased. When gold nanoparticles were distributed in only one voxel at the Bragg peak, the energy of the protons affected only the neighboring voxels. However, in cases where gold nanoparticles were distributed over a wide area, the volume showing 95% of the maximum absorbed energy (9.46 keV) for the pure water phantom (9.95 keV) exhibited an improvement in absorbed energy over a region 16 times larger, and this region increased as the density ratio increased. Further research is needed to quantify the relationship between the density ratio of gold nanoparticles and the relative biological effect (RBE) in the millimeter scale.

Evaluation of the Two Class Population Balance Equation for Predicting the Bimodal Flocculation of Cohesive Sediments in Turbulent Flow (난류조건에서의 점착성 유사 이군집 응집 모형 적용성 평가)

  • Lee, Byung Joon;Toorman, E.A.
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.233-243
    • /
    • 2015
  • The bimodal flocculation of cohesive sediments in water environments describes the aggregation and breakage process developing a bimodal floc size distribution with dense flocculi and floppy flocs. A two class population balance equation (TCPBE) was tested for simulating the bimodal flocculation by a model-data fitting analysis with two sets of experimental data (low and high turbulent flows) from 1-D flocculation-settling column tests. In contrast to the Single-Class PBE (SCPBE), the TCPBE could simulate interactions between flocculi and flocs and the flocculation mechanism by differential settling in a low turbulent flow. Also, the TCPBE could perform the same quality of simulation as the elaborate Multi-Class PBE (MCPBE), with a small number of floc size classes and differential equations. Thus, the TCPBE was proven to be the simplest model that is capable of simulating the bimodal flocculation of cohesive sediments in water environments and water, wastewater treatment systems.

Extension of Storage Time of Chicon using Nanoparticle of Machilus thunbergii Extracts (후박추출물의 나노입자화를 통한 치콘의 저장기간 연장)

  • Kwon, Min-Chul;Han, Jae-Gun;Ha, Ji-Hye;Jin, Ling;Choi, Geun-Pyo;Park, Uk-Yeon;Lee, Dal-Ho;Hyeon-Yong, Lee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.320-325
    • /
    • 2008
  • Machilus thunbergii has been showed relation to antimicrobial activity on minimal inhibitoty concentration (MIC) and colony forming inhibitory activity (CFIA) test, so that can be used to food preservatives for green vegetable. Nanoparticles has been made of edible materials. 80% of the nanoparticles has been characterized by image analyser and electron microscopy, showing in the range under 300 nm diameter. The sprayed nanoparticles remained on the surface of chicon even after washing by dilution water, then activate biological activities for storage of chicon with storing and releasement system of extracts. Chicon treated nanoparticle has been kept fresh condition about 2 months longer than 3 weeks of the non-treated control. It can be tell that treatment with nanoparticle of M. thunbergii extracts extends storage time of chicon possibly by inhibition of ethylene production through efficiency control on cell breathing.

Analysis of Characterization on Ancient Ink Stick (고대 먹의 특성 분석)

  • Nam, Tae-Gwang;Shin, Soo-Jeong;Park, Won-Kyu;Kim, Byung-Ro
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.165-173
    • /
    • 2012
  • In this work, scientific and systematic analysis was conducted for finding out the methods and techniques of ancient ink stick making. Analysis the ancient ink stick on ancient documents and wooden writing as letter or painting, we concluded as followings. From the analysis of ancient wood by dendrochronology, wood was cut at 1899, which provided the information on the year of ink stick's made on writing on ancient wood. Single particle size for soot of ancient ink stick was 107 nm for ink on the roof-filling timber in Sinsunwonjeon of Changdeok Palace, compared to 38 to 86 nm on the letter on ancient 12 paper document. Aggregate particle size was 370 nm for ink on the roof-filling timber in Sinsunwonjeon of Changdeok Palace, but 206 to 318 nm for aggregate particle size on 12 paper documents. There was similar pattern between single particle size and aggregate particle size of soot, which might provide the information of raw material for ancient ink. From infra-red and Raman spectroscopic analysis of sheet of writing on paper or wood, there was severe interference from background material (paper or wood). From Raman spectroscopic analysis of ancient ink carefully separated from ancient wood, spectrum pattern was closer to ink stick made by the soot from pine burning.

Silica/polymer Nanocomposite Containing High Silica Nanoparticle Content : Change in Proton Conduction and Water Swelling with Surface Property of Silica Nanoparticles (고농도의 Silica Nanoparticle을 함유한 Silica/polymer 나노복합체 : 실리카 표면 특성에 따른 수소이온 전도성 및 수팽윤도 변화)

  • Kim, Ju-Young;Kim, Seung-Jin;Na, Jae-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.514-521
    • /
    • 2010
  • A new one-shot process was employed to fabricate proton exchange membranes (PEMs) over conventional solvent-casting process. Here, PEMs containing nano-dispersed silica nanoparticles were fabricated using one-shot process similar to the bulk-molding compounds (BMC). Different components such as reactive dispersant, urethane acrylate nonionmer (UAN), styrene, styrene sulfuric acid and silica nano particles were dissolved in a single solvent dimethyl sulfoxide (DMSO) followed by copolymerization within a mold in the presence of radical initiator. We have successfully studied the water-swelling and proton conductivity of obtained nanocomposite membranes which are strongly depended on the surface property of dispersed silica nano particles. In case of dispersion of hydrophilic silica nanoparticles, the nanocomposite membranes exhibited an increase in water-swelling and a decrease in methanol permeability with almost unchanged proton conductivity compared to neat polymeric membrane. The reverse observations were achieved for hydrophobic silica nanoparticles. Hence, hydrophilic and hydrophobic silica nanoparticles were effectively dispersed in hydrophilic and hydrophobic medium respectively. Hydrophobic silica nanoparticles dispersed in hydrophobic domains of PEMs largely suppressed swelling of hydrophilic domains by absorbing water without interrupting proton conduction occurred in hydrophilic membrane. Consequently, proton conductivity and water-swelling could be freely controlled by simply dispersing silica nanopartilces within the membrane.

Measurement of the Size Distribution of Smoke Particles with Plastic Types Under Various Fire Conditions (다양한 화재조건에서 플라스틱 종류에 따른 연기입자의 크기분포 변화 측정)

  • Goo, Jaehark;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.8-15
    • /
    • 2017
  • Most fire victims succumb to smoke inhalation, and fire smoke toxicity from interior materials is increasing with increased use of plastics. Large amounts of hazardous effects of smoke are related to deposition of smoke particles in respiratory tracts, and deposition characteristics are influenced by size distribution of particles. Thus, it is essential to know the size distribution of smoke particles from plastics for hazard analysis of fire smoke. In a recent study, it has been shown that size distributions of smoke particles from PP are different from wood in many aspects. In order to know whether other plastics show the same characteristics as PP, size distributions of smoke particles from four plastic materials (LDPE, PA66, PMMA, and PVC) were measured in real time under each fire type with various temperature and oxygen supply. In this study, smoke particles from different plastics were generated uniformly by using steady-state tube furnace method provided in ISO/TS 19700. Their size distributions were measured by using an electrical low pressure impactor (ELPI). Results of measurements showed that size distributions of smoke particles from these four plastic materials were similar to those from PP in many aspects. However, they were distinctively different from those of wood.

Analysis on Behavior of Sediment Deposition in a Reservoir using a Numerical model (수치모형을 이용한 저수지내 퇴사 거동에 관한 연구)

  • Lim, Tae-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.888-892
    • /
    • 2008
  • 저수지의 퇴사는 저수량을 감소시켜 수명을 단축시키고 저수피해를 가중시킴과 동시에 용수공급에도 지장을 초래하게 된다. 또한 자연하천에서 흐르던 유사는 댐이라는 수공구조물로 인해 흐름에 방해를 받으며, 홍수기 홍수조절을 위한 방류시 하류 하천의 하상변동에 영향을 미치게 된다. 100년을 내용수명으로 하는 다목적댐은 한번 건설되면 저수상태에서 장기간 유지관리를 필요로 하므로 저수지내 퇴사에 대한 예측은 설계 단계에서 부터 신중한 검토와 적용이 요구된다. 저수지내에서 유사의 퇴적으로 인한 하상변동은 유역내에서 유입되는 유사입자의 크기와 형상, 하천의 계절적 유량변화와 유사량 변화, 저수지의 형태와 크기, 그리고 저수지의 홍수기 방류량과 운영계획 등 상호 관련된 많은 요소에 의해 좌우된다. 따라서 합리적이고 효율적인 하천 및 저수지의 정비와 관리를 위해서는 적절한 수치모형을 이용한 저수지의 퇴사분포 예측과 퇴사량 예측이 필요하다. 본 연구에서는 홍수기간 저수지로 유입되는 홍수량을 대상으로 퇴사거동에 대한 변화를 알아보기 위해 2차원 수치모형인 SMS(Surface-Water Modeling System) 모형을 사용하였으며, 모형내에 내장되어 있는 RMA-2와 SED-2D에 대한 모형의 특성 사용법 입력자료를 분석하고 대상유역에 대한 기 조사된 하천 종 횡단 자료를 토대로 지형자료를 작성하여 기본계획 단계에 있는 김천시 부항다목적댐을 대상으로 100년 빈도 홍수량 유입시 공간적 퇴사거동 현상을 모의하였으며, 유속분포 퇴사의 공간적범위를 고려하여 저수지내 구조물 위치 선정 등에 미치는 영향을 연구하였다.

  • PDF