Ye-Jee Kang;Fei Li;Yeon-Ji Jang;Hye-Rin Kang;Seo-Yoon Park;Han-Saem Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.300-304
/
2022
본 논문은 한국어 법률 텍스트 처리를 위해 세 가지 서로 다른 사전 학습 모델을 미세 조정하여 그 성능을 평가하였다. 성능을 평가하기 위해 타겟 판결 요지에 대한 판결 요지 후보를 추출하여 판결 요지 간의 유사도를 계산하였다. 또한 유사도를 바탕으로 추출된 판결 요지가 실제 법률 전문가와 일반 언어학자의 직관에 부합하는지 판단하기 위해 정성적 평가를 진행하였다. 그 결과 법률 전문가가 법률 전문 지식이 없는 일반 언어학자에 비해 판결 요지 간 유사도를 낮게 평가하였는데 법률 전문가가 법률 텍스트의 유사성을 판단하는 기준이 기계와 일반 언어학자와는 달라 전문가 자문에 기반한 한국어 법률 AI 모델 개발의 필요성을 확인하였다. 최종 연구 결과로 한국어 법률 AI 프레임워크를 제안하였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.353-360
/
2021
음성 대화 시스템에서는 사용자가 잘못된 슬롯명을 말하거나 음성인식 오류가 발생해 사용자의 의도에 맞지 않는 응답을 하는 경우가 있다. 이러한 문제를 해결하고자 말뭉치나 사전 데이터를 활용한 질의 교정 방법들이 제안되지만, 이는 지속적으로 사람이 개입하여 데이터를 주입해야하는 한계가 있다. 본 논문에서는 축적된 로그 데이터를 활용하여 사람의 개입 없이 음악 재생에 필요한 슬롯을 교정하는 자기 학습(Self-learning) 기반의 모델을 제안한다. 이 모델은 사용자가 특정 음악을 재생하고자 유사한 질의를 반복하는 상황을 이용하여 비지도 학습 기반으로 학습하고 음악 재생에 실패한 슬롯을 교정한다. 그리고, 학습한 모델 결과의 정확도에 대한 불확실성을 해소하기 위해 질의 슬롯 관계 유사도 모델을 이용하여 교정 결과에 대한 검증을 하고 슬롯 교정 결과에 대한 안정성을 보장한다. 모델 학습을 위한 데이터셋은 사용자가 연속으로 질의한 세션 데이터로부터 추출하며, 음악 재생 슬롯 세션 데이터와 질의 슬롯 관계 유사도 데이터를 각각 구축하여 슬롯 교정 모델과 질의 슬롯 관계 유사도 모델을 학습한다. 교정된 슬롯을 분석한 결과 발음 정보가 유사한 슬롯 뿐만 아니라 의미적인 관계가 있는 슬롯으로도 교정하여 사전 기반 방식보다 다양한 유형의 교정이 가능한 것을 보였다. 3 개월 간 수집된 로그 데이터로 학습한 음악 재생 슬롯 교정 모델은 일주일 동안 반복한 고유 질의 기준, 음악 재생 실패의 12%를 개선하는 성능을 보였다.
The study investigates the impact of data quality on the performance of artificial intelligence (AI). To this end, the impact of labeling error levels on the performance of artificial intelligence was compared and analyzed through simulation, taking into account the similarity of data features and the imbalance of class composition. As a result, data with high similarity between characteristic variables were found to be more sensitive to labeling accuracy than data with low similarity between characteristic variables. It was observed that artificial intelligence accuracy tended to decrease rapidly as class imbalance increased. This will serve as the fundamental data for evaluating the quality criteria and conducting related research on artificial intelligence learning data.
미국의 벤처캐피탈 산업은 벤처캐피탈 분야에 진입하고 있는 많은 나라들에게 본보기가 되고 있다. 그러나 서로 다른 문화, 정치 경제적 상황 및 각국의 벤처캐피탈 산업의 고유한 역사 등은 벤처캐피탈의 경영 방식에 영향을 미칠 수 있다. 본 연구는 한국의 벤처캐피탈리스트의 투자의사결정이 미국의 벤처캐피탈리스트와 어떻게 다른가에 초점을 두었다. 연구 결과는 한국의 벤처캐피탈리스트는 투자의사결정의 과정에서 미국과는 다른 기준을 사용하며, 그 예측의 정확성은 미국에 비해 떨어지는 것으로 나타났다. 한국 벤처캐피탈리스트와 미국 벤처캐피탈리스트 모두 경쟁력은 매우 중요한 투자의사결정 기준으로 나타났다. 그러나 미국의 벤처캐피탈리스트가 시장규모와 성장성을 중요하게 고려한데 비해 한국의 벤처캐피탈리스트는 소유권 보호에 중점을 두었다. 그렇지만, 한국과 미국의 벤처캐피탈리스트 사이에는 기대 이상으로 유사점이 많은 것으로 나타났다. 이러한 유사점이 존재하는 현상은 많은 한국의 벤처캐피탈리스트들이 미국에서 교육을 받았거나 미국식의 모형에 의한 교육을 받아왔다는 점에서 찾을 수 있을 것이다. 또한 한국의 벤처캐피탈리스트는 이미 성공적인 미국식 벤처캐피탈 모형을 표준으로 삼고 모방하려고 노력하고 있다는 점을 들 수 있을 것이다.
본 논문은 칼라 필터 배열(color filter array : CFA) 영상에서 채널 간 상관관계를 이용한 새로운 에지 방향 컬러 보간 방법을 제시하였다. 고정 채널 간 컬러 차 가정에 따라 휘도와 색차간의 차가 큰 경우 에지 영역이라 판단한다. 에지 방향 판별을 정확히 하기 위해 수평, 수직 방향으로 컬러 차 영상을 구하고, 구한 영상에서 변화량을 계산하여 에지 방향 판별 기준으로 사용한다. 에지 판별 기준을 사용하여, 에지 방향에 따라 컬러 보간을 수행한다. 평탄 영역은 이웃 화소와의 유사성에 따라 가중치를 다르게 줘서, 이웃 화소의 가중치 합으로 구한다 실험 결과는 제안하는 알고리즘이 기존 알고리즘 보다 우수함을 보여준다.
전자상거래 상의 방대한 데이터베이스의 자료 중에서 검색한 정보를 직관적으로 선택할 수 있도록 하기 위해서는 효율적인 검색 기능뿐만 아니라 검색된 결과의 표현 및 가시화에 대한 부분이 중요하다. 현재까지 검색 방법의 효율성에 대한 연구는 많이 진행되고 있으나 검색 결과의 가시화 방법에 대한 연구는 미미한 형편이다. 본 연구에서는 전자상거래를 위한 검색 결과를 유사도를 기준으로 가시화 시키는 데이터 가시화에 대한 연구를 하였다. 유사도는 유클리드 거리를 기준으로 Nearest Neighbor 방법을 사용하여 2차원 평면상에 상품을 가시화하도록 하는 전자상거래 상품 가시화 에이전트를 설계하고 구현한다.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.491-494
/
2004
최근 인터넷 쇼핑몰에서 상품을 구매하는 고객들에게 편의성과 효율성을 제공하기 위하여 구매자들의 선호도나 가격에 맞는 상품을 추천해 주는 연구들이 활발하게 진행되고 있다. 그러나 이러한 상품을 추천하는 연구들은 다양하게 발전하고 있지만 추천된 상품들의 구매시점에 관한 연구는 찾아보기 어렵다. 이에 본 논문에서는 인터넷 쇼핑몰의 적극적인 마케팅 일환으로 상품을 구매할 시점을 추천해 주는 방안을 제안한다. 이를 위하여 과거의 판매 기록 데이터베이스에 있는 판매가격의 기준 시계열 패턴과 유사한 시계열 패턴을 정규화 변환된 유사도로써 검색한다. 검색된 과거 가격 패턴을 기준으로 미래 가격 패턴을 분석하여, 미래 가격 패턴의 변화에 따라 상품 구매시점을 추천한다. 또한 본 논문에서는 이러한 구매시점을 추천하는 상품 추천 시스템을 설계한다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.15-17
/
1998
설명 기반 학습은 시스템 성능향상에 필요한 탐색 제어 지식을 학습하는 방법으로 많이 이용되고 있다. EBL은 과거의 문제풀이 과정을 일반화하여 학습한 다음 이와 유사한 상황이 발생할 경우, 문제풀이를 거치지 않고 학습된 해답을 신속하게 제시하여 성능을 향상시킨다. 그러나 새로운 문제 해결이 과거 문제 풀이 해답에 의존할 경우, 그에 대한 해답을 신속히 구할 수는 있지만 해답의 질은 학습 결과에 의존하지 않을 때보다 오히려 못할 수 있다. 이러한 현상을masking효과라고 한다. 본 논문에서는 의존성 구조를 학습, 이용하여 이러한 masking 효과를 축소하고자 한다. 의존성 구조는 현 상태에서 선택된 연산자가 이후의 문제 풀이에 끼치는 영향을 포함하는 구조로서, 이후 유사한 상황에 대해 선택될 연산자의 적합성 및 효율성을 평가하는 기준으로 사용될 수 있다는 점에서 masking 효과를 축소할 수 있다.
Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.390-390
/
2021
본 연구에서는 통계적 방법에 의해 예측된 미래기간의 기온정보와 기온기반의 기준증발산량 산정방법을 연계하여 한강권역을 대상으로 최대 12개월의 미래기간에 대한 기준증발산량을 전망하였다. 기온정보는 Kim et al. (2020)의 연구와 같이 글로벌 기후지수와의 원격상관성을 기반으로 개발된 다중회귀모형을 이용하여 미래기간(예측시점 기준 1~12개월)에 대해 월 평균기온을 예측하고 이를 상세화하여 한강권역 내 주요 ASOS 지점별로 최고/최저기온을 도출하였다. 기준증발산량은 Hamon 방법(Hamon, 1960, 1963)을 기반으로 각 지점별로 상세화된 최고/최저기온을 이용하여 동일한 미래기간(1~12개월)에 대해 산정하였다. 한강권역 전체에 대해 2015년 1월~2020년 12월의 월별 평균기온과 각 지점별 산정한 기준증발산량을 활용하여 기온 및 기준증발산량에 대한 예측성을 분석하였다. 한강권역 전체에 대해 예측된 월별 평균기온의 경우 실제 관측값과 비교하였을 때, PBIAS 4.2~6.4%, R2 0.97~0.98, NSE 0.97~0.98 등으로 매우 높은 예측성을 보였다. 지점별로 상세화된 기온정보를 이용하여 산정한 기준증발산량을 실제 기온으로부터 산정한 기준증발산량과 비교한 결과는 PBIAS 5.0~6.8%, R2 0.97~0.98, NSE 0.96~0.97로 기온에 대한 예측성과 유사하게 나타났다. 기온과 기준증발산량 모두 일부 월이나 일부 지점에서 관측값과 비교했을 때 다소 차이를 보이는 경우도 있었으나, 대상유역 전반적으로는 매우 안정적인 예측결과를 확인할 수 있었다. 기준증발산량에 대한 예측결과(미래 1~12개월)는 계절 및 월 단위의 유역 수자원 전망에 유용하게 활용될 수 있을 것으로 판단된다.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.3
/
pp.292-297
/
2014
As a Social Network Service (SNS) has become an integral part of our everyday lives, millions of users can express their opinion and share information regardless of time and place. Hence sentiment analysis using micro-blogs has been studied in various field to know people's opinion on particular topics. Most of previous researches on movie reviews consider only positive and negative sentiment and use it to predict movie rating. As people feel not only positive and negative but also various emotion, the sentiment that people feel while watching a movie need to be classified in more detail to extract more information than personal preference. We measure sentiment distributions of each movie from tweets according to the Thayer's model. Then, we find similar movies by calculating similarity between each sentiment distributions. Through the experiments, we verify that our method using micro-blogs performs better than using only genre information of movies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.