• Title/Summary/Keyword: 유로변경

Search Result 59, Processing Time 0.03 seconds

A Numerical Study of Cathode Block and Air Flow Rate Effect on PEMFC Performance (고분자전해질 연료전지의 환원극 블록과 공기 유량 영향에 대한 전산 해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.96-102
    • /
    • 2022
  • Reactants of PEMFC are hydrogen and oxygen in gas phases and fuel cell overpotential could be reduced when reactants are smoothly transported. Numerous studies to modify cathode flow field design have been conducted because oxygen mass transfer in high current density region is dominant voltage loss factor. Among those cathode flow field designs, a block in flow field is used to forced supply reactant gas to porous gas diffusion layer. In this study, the block was installed on a simple fuel cell model. Using computational fluid dynamics (CFD), effects of forced convection due to blocks on a polarization curve and local current density contour were studied when different air flow rates were supplied. The high current density could be achieved even with low air supply rate due to forced convection to a gas diffusion layer and also with multiple blocks in series compared to a single block due to an increase of forced convection effect.

Analysis of the Characteristics of the River Bed Variation by Flow Direction Changes at a Channel Junction (합류부내에서 유로 흐름방향 변경에 따른 하상변화 특성 분석)

  • Choi, Gye-Woon;Ahn, Kyung-Hoon;Jung, Jae-Kawng
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.117-124
    • /
    • 2010
  • Most of the rivers which exist in nature are not a single river but the network that is composed of several branches and mainstreams. The river network are more complicated than other sigle rivers and streams. Therefore the hydraulic characteristics are sensitively changed by reduction and expansion of the width in the confluence or the variation of the flux. In this paper, the hydraulic characteristics were calculated by the change of the width and length in the confluence and the hydraulic model test. The deposit of confluence emerged at the left bank, right bank and the stagnation sector. As the total flow in the branch have increased, stagnation of the left bank and right bank have decreased. When the width of the downstream have been get smaller from 3 m to 2 m, the deposit of the left bank and right bank and stagnation sector have decreased. But as the eddy flow in the center of the confluence is occurred, the erosion has been increased. The result of this paper can be used as a basic data of water management around the junction and for maintenance on the ground of development of the river.

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

Literature Survey on Pyrovalve Technology in USA (미국의 파이로밸브 기술에 관한 문헌조사)

  • Yoo, Jaehan
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.167-176
    • /
    • 2014
  • The pyrovalves are widely used in aerospace industry for the opening and closing of flow channel due to the light-weight, high reliability and zero-leakage. In the United States, the loss of some spacecrafts using hydrazine as the propellent were proven by the blowby. Blowby is defined as the leakage of pyrovalve ignition combustion gas to the flow channel. Since then, the interference fit was applied for the sealing of piston to prevent the blowby. In this study, literature survey on pyrovalve technology is summarized mainly for AIAA papers. Common problems, improvement method, and performance comparisons of pyrovalves are also presented.

A Study on the Characteristics of Channel Line (유심특성에 관한 연구)

  • Mun, Su-Nam;Lee, Jong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The flow in meandering channel has a great influence on curved bank revetment in river morphology. It is difficult to state generalized cirteria for channel improvement applicable to any paricular river. But it is very important to provide some principles and guidelines for design engineers. The objective of this experimental study in fixed bed model is to povide effective data that find out maximum velocity size by the mean velocity and the radius of curvature in curved channel, for the purpose of improving small stream without hydraulic modeling test each time.

  • PDF

The Conprehesion of the River Wetlands Through JangJyoua Wetlands in ImJin Gang (임진강 장좌못을 통하여 본 하천습지의 이해)

  • Moon, Hyun-Sook
    • Journal of the Speleological Society of Korea
    • /
    • no.72
    • /
    • pp.47-52
    • /
    • 2006
  • JangJyoua wetland is the bow lake that was become through the change of river change. It is the river wetlands and the swamps-type III. The water in wetlands is in and out through the Imjin old river channel. The river wetlands has been classified by many scholar. But there are two conditions that JangJyoua is developed on the floodplains and is same the ground water table between JangJyoua and ImjinGang. So, JangJyoua is the swamps-type III.

Effect of Reduced Valve Overlap on Emission Characteristics of Hydrogen-Compressed Natural Gas Engine (수소-천연가스엔진에서 밸브오버랩 감소가 배기특성에 미치는 영향)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In order to meet the current emission regulations (EURO-6), it is necessary to significantly reduce $CH_4$ and $NO_X$ emissions. This study investigated the effect of a reduction in the valve overlap on the combustion and emission characteristics of a hydrogen-compressed natural gas engine under a part-load operating condition. The combustion and emission characteristics were analyzed for each fuel using the original camshaft and an altered camshaft with reduced valve overlap. The results showed that the thermal efficiency was decreased and the fuel flow was increased when using the altered camshaft. The $CO_2$ and $CH_4$ emissions were increased as a result of the reduced thermal efficiency. Under lean operating conditions, the $NO_X$ emission was decreased compared with one of the conventional camshaft. Thus, under the same fuels and operating conditions, it had a harmful influence on the emission characteristics and thermal efficiency.

An Experimental Study of the Performance Characteristics on a Multi-Stage Micro Turbine with Various Stages (다단 마이크로터빈에서 단수 변화에 따른 터빈의 성능에 관한 실험적연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.76-82
    • /
    • 2005
  • An experimental study on an axial-type micro turbine which consists of maximum 6 stages is conducted to measure aerodynamic characteristics on each stage. This turbine has a 2.0 flow coefficient, 3.25 loading coefficient and 25.8mm mean diameter. The solidity of stators and rotors is within a 0.67~0.75, and the off-design performance is measured by changing the load after adjusting the mass flowrate and the total pressure to constant at inlet. A maximum specific output power of 2kW/kg/sec is obtained in one stage, but the increment of the specific output power with increasing stages is alleviated. In case of torque, the increment of the torque maintains to constant at low RPM region, but its increment become dull at high RPM region. The efficiency of the micro turbine becomes low because the tip gap effect is great due to the small blade, but it could be improved by increasing the stages.

Simulation Study of the Phosphoric Acid Fuel Cell Stack (인산형 연료전지 스택의 전산모사)

  • Choi, Sungwoo;Lee, Kab soo;Kim, Hwayong
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.243-250
    • /
    • 2001
  • The fuel cell has been continuously studied as environment-compatible alternative energy technology. Lately the basic techniques about stacking and widening are considered to be important for practical use. Although phosphoric acid fuel cell (PAFC) is the most progressed one in the fuel cell technologies, few studies about temperature profile of the stack which can be the basic data for the fuel cell design have been reported yet. In this study, the temperature profile of PAFC stack was simulated. The temperature profiles of stack were obtained at various operating conditions, and when stack is operated the proper position to measure the temperature could be predicted. Also we can propose more effective cooling design. The standard deviation of the temperature profile of the proposed design was is about 50% smaller.

  • PDF

An Experimental Study on the Metal Surface Temperature and Heat Transfer by Improving Gasoline Engine Cooling Passages (가솔린엔진의 냉각계 유로 변경을 통한 금속면 온도 및 전열에 관한 실험적 연구)

  • 이재헌;류택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Metal surface temperatures around the combustion chamber in a gasoline engine directly affect thermal durability and performance of the engine. Metal surface temperatures are influenced by many cooling factors such as drilled water passage, deflector, combustion chamber wall thickness, pillar, and coolant flow pattern. The object of this study is to learn how the coolant passages and coolant flow pattern in an engine influence to the engine metal surface temperature at engine full load and speed. From the test result, it is suggested a plan to reinforce the engine stiffness and to reduce the thermal stress simultaneously. Also, approaches are introduced to reduce the thermal load on the engine by adjusting the discharging direction from the water pump and by optimizing the water transfer holes in the cylinder head gasket. These methods and the optimized engine cooling system, which were suggested in this paper, were adapted for an engine in progress to eliminate the exhaust valve seat wear.