• Title/Summary/Keyword: 유동-구조 연성

Search Result 87, Processing Time 0.033 seconds

Computation of Fluid-Structure Interaction on a Blade Used in Wind Power (풍력발전용 블레이드의 유동/구조 연성해석)

  • Kim, Yun-Gi;Kim, Kyung-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.698-701
    • /
    • 2005
  • 본 연구에서는 풍력발전용 블레이드에 대한 일방향 유동/구조 연성해석을 하였다. 계산에 사용된 모델은 100kW급 풍력발전기 블레이드이며 정격용량은 42rpm이다. 유동영역에 대한 계산은 블레이드 표면에 작용하는 압력데이터를 얻기 위하여 행해지고 구조해석에서는 같은 모델에 대하여 얻어진 압력데이터를 하중조건으로 적용하여 풍력발전기의 변위 및 최대응력값을 계산한다. 계산결과 최대응력이 발생하는 지점은 날개의 후면 허브부분인 것으로 나타났다. 입구속도가 증가할수록 전면과 후면에 작용하는 압력차로 인해 출력과 최대변위는 포물선 형태로 증가함을 알 수 있었다.

  • PDF

Analysis of Liquid Sloshing in a Two-Dimensional Elastic Tank (구조물의 탄성을 고려한 2차원 탱크내 유동해석)

  • P.M.,Lee;S.W.,Hong;S.Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.107-116
    • /
    • 1990
  • The liquid sloshing in an elastic tank is a fluid-structure interaction problem. It requires nonlinear analysis to solve the complicated physics involved in the large interaction of fluid-structure, the variation of dynamic characteristics of structure due to hydrodynamic loading, and the distorsion of fluid flow due to structural vibration. In this paper a Lagrangian FEM is introduced to analyze the liquid sloshing in an elastic tank assuming that the elastic wall is one degree of freedom rigid wall. Numerical integration is performed using an implicit-explicit algorithm, which is formed by mixing the predictor-corrector method and the Runge-Kutta 4th order method. The influence of dynamic characteristics of the sloshing tank on the fluid flow is discussed. The numerical method is also applied for the simulation of the wall generated wave in the tank.

  • PDF

Deriving Reference Data for Alarm System in a Container Crane by Fluid-Structure Interaction Analysis (유동구조연성해석을 통한 컨테이너 크레인의 경보시스템용 기준 데이터 도출)

  • Han, Dong-Seop;Han, Geun-Jo;Kwak, Ki-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1091-1096
    • /
    • 2010
  • This study was conducted to provide reference data for designing an alarm system that can help prevent the overturning of a container crane under wind load. Two methods, namely, fluid-structure interaction (FSI) analysis and windtunnel test, were adopted in this investigation. To evaluate the effect of wind load on the stability of the crane, a 50-ton-class container crane that is widely used in container terminals was adopted as the analysis model and 19 values were considered as design parameters for wind direction. First, the wind-tunnel test for the reduced-scale container crane model was performed according to the wind direction by using an Eiffel type atmospheric boundary-layer wind tunnel. Next, the FSI analysis for the real-scale container crane was conducted using ANSYS and CFX. Then, the uplift force determined from the FSI analysis was compared with that determined from the wind-tunnel test. Finally, a formula to compensate for the difference between the results of the FSI analysis and the wind-tunnel test was proposed.

Flow-structure Interaction Analysis for Durability Verification by the Wind Force of Outdoor Evacuation Stairs (옥외형 피난계단의 풍압에 따른 내구성 검증을 위한 유동-구조 연성해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-102
    • /
    • 2020
  • In this study, one-way fluid structure interaction analysis was adapted to verify the durability of the outdoor evacuation stair structure operated in the event of a fire when wind pressure caused by a typhoon was applied. To this end, flow analysis was performed with the flow field around the structure of the evacuation stair in a steady state, and the durability was analyzed through structural analysis such as structural stress, deformation, and fatigue life using these analysis results by fluid data input data for structural analysis. As a result of flow numerical analysis, the air flow was different according to the shape of the evacuation stair structure, and this flow velocity distribution generated by the total pressure on the structure surface. Through the structural analysis results calculated by this total pressure, the safety factor calculated as the maximum stress value was found to be more than the safety factor, and durability was proven by fatigue life and deformation analysis.

A Study on the Effect of Wind Load to an Articulated type Container Crane by Fluid-Structural Coupled Field Analysis (유동-구조 연성해석기법을 이용한 풍하중이 관절형 컨테이너 크레인에 미치는 영향에 관한 연구)

  • An, Tae-Won;Lee, Seong-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • This study was carried out to the effect of wind load on the structural stability of an articulated type container crane according to the wind direction assuming that 75m/s wind velocity is applied on a container crane using FSI(fluid-structural interaction). To consider fluid phenomenon around the container crane, the wind load was derived by the computation fluid dynamic, and it applied to the FSI which can guarantee an accuracy and a reliability in the design stage for wind resistant structural stability to minimize the damage due to high wind load applied in a container crane with a 'ㄱ' type articulated boom which used in the total height restriction region. Following from this, the reaction force on the each support of a container crane was suggested. ANSYS ICEM CFD 10.0 and ANSYS CFX 10.0 used for computation fluid dynamic, and the ANSYS Workbench 11.0 was used for the fluid-structural interaction.

Fluid-structure interaction analysis on a low speed 200 W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 유체-구조 연성 해석)

  • Cho, Woo-Seok;Choi, Young-Do;Kim, Hyun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.344-350
    • /
    • 2013
  • The purpose of this study is to examine the structural stability of a low speed 200 W class gyromill type vertical axis wind turbine system. For the analysis, a commercial code is adopted. The pressure distribution on the rotor blade surface is examined in detail. In order to perform unidirectional FSI(Fluid-Structure Interaction) analysis, the pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition. The rotational speed and gravitational force of wind turbine are also considered. The results of FSI analysis show that the wind turbine reveals an enough structural margin. The maximum structural displacement occurs at trailing edge of blade and the maximum stress occurs at the strut.

Evaluation of Thermal Strain Effect on Pintle Nozzle using by FSI (유체-구조 연성해석을 이용한 핀틀-노즐 열변형 영향 평가)

  • La, Giwon;Lee, Kyungwook;Lee, Jongkwang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1048-1050
    • /
    • 2017
  • In this study, Numerical simulations of the pintle-nozzle were performed to evaluate the thermal strain effect using by 1-way fluid structure interaction analysis(FSI). we carried out computational fluid dynamics analysis to obtain the pressure and temperature fields of pintle nozzle. we then used the data as the load condition for a FSI separately. and thermal strain of the pintle was checked. In order to confirm the change of thrust characteristic by deformation, we are carrying out 2-way FSI.

  • PDF

A Study on the 1-Way FSI Analysis for Shutter of Side Jet Thruster (측추력기 Shutter의 단방향 유체-구조 연성해석에 관한 연구)

  • Ko, Jun Bok;Seo, Min Kyo;Lee, Kyeong Ho;Baek, Ki Bong;Cho, Seung Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1359-1365
    • /
    • 2014
  • In this study, 1-way fluid structure interaction analysis(FSI) for the shutter, component of side jet thruster was performed to evaluate the safety. Driving torque to open nozzle, thermal and high pressure load of hot gas was applied to shutter. Thus, the shutter must be designed to endure this load during combustion. We carried out computational fluid dynamics analysis to obtain the pressure, temperature, and heat transfer coefficient of hot gas of side jet thruster. We then used the data as the load condition for a thermal structural analysis using a mapping method. The locations with the maximum stress and temperature distributions were found. We compared the maximum stress with the tensile stress of shutter material according to temperature to evaluate the safety. We also analyzed the radial deformation of the shutter to set the proper interface gap with the side jet thruster parts.

Modeling of Erosive Burning for Fluid-Structure Integration Analysis of Solid Rocket Motor (고체 로켓 모터 유동-구조 연성 해석을 위한 침식연소 모델링)

  • Lee, Jeongsub;Jin, Jungkun;Kim, Shinhoe;Jung, Gyoodong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • In this research, the modeling of erosive burning and analysis of effective parameters were carried out for the application of fluid-structure integration analysis. The manufacture, test, and analysis of erosive burning motors were carried out to estimate the erosive burning applying Lenoir & Robillard model considering effective parameters. The erosive burning phenomenon was detected from experimental results. Erosive burning model and its effective parameters were evaluated and analyzed considering existence of aluminum in propellant, relationship among erosive burning coefficients according to characteristic length, effect of grain initial temperature. The erosive burning model was applied to the fluid-structure integration analysis, and the estimated results were close to the experimental results.