• Title/Summary/Keyword: 유동 천이

Search Result 337, Processing Time 0.024 seconds

COMPUTATION OF TRANSITION FLOW WITH LAMINAR SEPARATION BUBBLE OVER AN AIRFOIL (익형의 층류박리를 동반한 천이 유동 해석)

  • Jeon, S.E.;Park, S.H.;Kim, S.H.;Byun, Y.H.;Lee, J.W.;Jung, K.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.60-64
    • /
    • 2009
  • Laminar separation bubble and transitional flow over an airfoil are investigated at a moderate range of Reynolds numbers. In this research, a Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for NACA0012 airfoil. Results of transition onset point and length are compared well with experimental and XFOIL prediction. In high angle of attack the present RANS results show better agreement than XFOIL results using the boundary layer equations.

  • PDF

LOW-SPEED AERODYNAMIC CHARACTERISTIC OF TRANSITION FLOW OVER THE NACA0012 (NACA0012 천이 유동의 저속 공력 특성 해석)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Kim, Sang-Ho;Byun, Yung-Hwan;Jung, Kyung-Jin;Kang, In-Mo
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • Laminar separation bubble and transitional flow over the NACA0012 are investigated at a moderate range of Reynolds numbers. A Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for the NACA0012 airfoil. Results of transition onset point and the length are compared well with experimental data and Xfoil prediction. The present RANS results show at high angles of attack better agreement with experimental data than Xfoil results using the boundary layer equations.

A Study on the Ignition and Combustion Characteristics During the Transition from the Rocket Booster to Ramjet Sustainer (램제트 천이 시 점화 및 연소 특성 연구)

  • Yoon, Jae-Kun;Yoon, Hyun-Gull;Gil, Hyun-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.996-999
    • /
    • 2011
  • The flow and combustion dynamics in the ignition and ramjet sustainer phase of an integrated rocket-ramjet(IRR) engine are investigated. The physical model includes the entire engine flowpath, from the freestream in front of the inlet to the exit of the exhaust nozzle. The flowfield obtained from a rocket booster study is used as the initial condition for the present analysis, so that the complete operation history of the engine can be obtained. The analysis for the primary factor governing flame propagation during the ignition and the key mechanisms for driving and sustaining the flow oscillations are performed.

  • PDF

The Beat and Flow Analysis of the Liquid Helium for the Pressurization of Liquid Rocket Propellant Tank (액체로켓 추진제 탱크 가압용 액체헬륨의 열유동 해석)

  • 조기주;정영석;조인현;김용욱;이대성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.10-17
    • /
    • 2003
  • The steady and transient thermal and flow analysis for liquid helium using for the pressurization of liquid rocket propellant tanks have been conducted numerically. The required inner diameter of helium channel that satisfy the design mass flow rate and velocity, through the steady state analyses for various thermal conditions at the wall, is determined and it is found that due to the sign of Joule-Thomson coefficient of helium, the temperature of helium increase monotonically for adiabatic wall condition. The temporal behavior of helium temperature, density, velocity are also investigated under the existence of local heat inflow on the wall.

Oscillatory Motion of Natural Convective Flow in Partially Divided Square Enclosure (수평격판을 갖는 4각형 밀폐공간내에서 자연대류의 진동유동)

  • 김점수;정인기;송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1963-1970
    • /
    • 1992
  • An oscillatory motion of the natural convection in a two dimensional, partially divided square enclosure heated from below, and fitted with a partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the mid-height of the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were performed with the variation of the length and the thermal conductivity of the partition, and Rayleigh number based on the temperature difference between horizontal walls and the enclosure height with water(Pr=4.95). also, the effect of the inclination angles was studied for the transition to the oscillating flow. As the results, it was found that the intensity and frequency of oscillatory motion were affected significantly by the Rayleigh number and the length of partition. The effect of oscillatory motion was weaken with the increase of the thermal conductivity of partition. The inclination angle for the transition was raised with the increase of Rayleigh number and the length of partition.

Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude (중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석)

  • Choi, Kyungjun;Lee, Seonguk;Oh, Kwangseok;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.986-993
    • /
    • 2018
  • Lateral thrust jet has better maneuverability performance than the control surface like the conventional fin for attitude control or orbital transition of guided weapons. However, in the supersonic region, a jet interaction flow occurs due to the lateral thrust jet during flight, and a complicated flow structure is exhibited by the interaction of the shock wave, boundary layer flow, and the vortex flow. Especially, hit-to-kill interceptors require precise control and maneuvering, so it is necessary to analyze the effect of jet interaction flow. Conventional jet interaction analyses were performed under low altitude conditions, but there are not many cases in the case of medium altitude condition, which has different flow characteristics. In this study, jet interaction flow analysis is performed on the lateral jet controlled interceptor operating at medium altitude. Based on the results, the structural characteristics of the flow field and the changes of aerodynamic coefficient are analyzed.

Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(I) Cascade Flow Analysis (유한체적법을 이용한 터보기계 회전차내부의 천이음속.층류 유동해석 (I) 익렬 유동해석)

  • 조강래;오종식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.445-451
    • /
    • 1993
  • For the calculation of transonic laminar flow fields in cascades of turbomachinery, a finite volume method employing Jameson's Runge-Kutta integration scheme as a basic algorithm is presented. The cell-vertex scheme introducing half-spacing mesh cells is developed. For the velocity gradients in the stress terms the integration with divergence theorem is used for the average concept. Some numerical results show good agreement with experimental data.

A Study on the Flow Characteristics of Developing Transitional Steady Flows in a Curved Duct by Using Laser Doppler Velocimeter (I) (곡관덕트에서 LDV를 이용한 천이정상유동의 유동특성에 관한 연구(I))

  • 봉태근;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.96-101
    • /
    • 2000
  • In this paper, an experimental investigation of characteristics of developing transitional steady flows in a square-sectional 180 urved duct is presented. The experimental study is carried out to measure axial velocity profiles by using Laser Doppler Velocimeter (LDV) system. The flow development is found to depend upon Dean number and curvature ratio. For transitional steady flows, the maximum velocity position of axial velocity profiles begins to incline toward the outer wall from $\phi$=$30^{\circ}$bended angle, velocity profiles in center of the duct have lower value than those of the inner and outer walls because of the centrifugal forces.

  • PDF

A Study on the Transitional Flows in a Concentric Annulus with Rotating Inner Cylinder (안쪽 축이 회전하는 환형관내 천이유동에 관한 연구)

  • 김영주;황영규;우남섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.833-843
    • /
    • 2002
  • The present experimental and numerical investigations are performed for the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin- friction coefficients have been measured for the fully developed flow of water and glycerine-water solution (44%) with the inner cylinder rotating at speed of 0∼600 nm, respectively. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime.

자기부상열차의 공력 특성에 관한 수치 연구

  • Won, Seong-Sik;U, Dae-Cheon
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.55-57
    • /
    • 2016
  • 본 연구에서는 초고속 자기부상열차의 단면도를 통하여 2-D형상을 모델링하고 이를 기반으로 항력과 유동 특성에 대한 분석을 수행하였다. 유동의 마하수가 0.3 이상임을 고려하여 압축성 모델이 사용되었고, 난류모델은 Menter's k-w SST(Shear Stress Transport)모델을 적용시켰다. 2-D 해석과 자기부상열차의 특성상 열차가 공기중에서 주행하고 있는 것으로 가정하고 공력 특성을 해석하였다.

  • PDF