• Title/Summary/Keyword: 유동 유체 파이프

Search Result 120, Processing Time 0.029 seconds

The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids (내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식)

  • 서영태
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF

Dynamic Stability of Pipes Conveying Fluid with Spring Supports (유동유체에 의한 복수 스프링 지지된 파이프의 동적안정성)

  • 류봉조;정승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1202-1206
    • /
    • 2001
  • The paper presents the dynamic stability of a vertical cantilevered pipe conveying fluid and having translational linear spring supports. Real pipe systems may have some elastic hanger supports or other mechanical attached parts., which can be regarded as attached spring supports. Governing equations are derived by energy expressions, and numerical technique using Galerkin's method is applied to discretize the equations of small motion of the pipe. Effects of spring supports on the dynamic stability of a vertical cantilevered pipe conveying fluid are fully investigated for various locations and spring constants of elastic supports.

  • PDF

The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid (유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Choi, Chang-Soo;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.

Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving Mass (이동질량을 가진 유체유동 회전 외팔 파이프의 동특성)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.586-594
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bernoulli beam theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever pipe is more sensitive to the effect of a angular velocity. Totally, as the moving mass is increased, the frequency of a cantilever pipe is decreased in steady state.

Dynamic Stability of Rotating Cantilever Pipe Conveying Fluid with Tip mass and Crack (끝단질량과 크랙을 가진 유체유동 회전 외팔 파이프의 동적 안정성)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.

Study on Fluid Flow and Heat Transfer Characteristics in a Flat Heat Pipe (평판형 히트 파이프 내의 유체 유동 및 열전달 특성에 관한 연구)

  • Do, Kyu-Hyung;Kim, Sung Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2113-2118
    • /
    • 2007
  • In this study, a mathematical model for a thermal analysis of a flat heat pipe with a grooved wick structure is presented. The effects of the liquid-vapor interfacial shear stress, the contact angle, and the amount of liquid charge have been included in the proposed model. In particular, the axial variations of the wall temperature and the evaporation/condensation rates are considered by solving the one-dimensional conduction and the augmented Young-Laplace equations, respectively. In order to verify the model, the results obtained from the model are compared to existing experimental data.

  • PDF

The Stability of Composite Pipes Conveying Fluid (유체유동에 의한 복합재료 파이프의 안정성 연구)

  • 최재운;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.904-910
    • /
    • 2001
  • Static and oscillatory loss of stability of composite pipes conveying fluid is investigated. The theory of thin walled beams is applied and transverse shear, rotary inertia, primary and secondary warping effects are incorporated. The governing equations and the associated boundary conditions are derived through Hamilton's variational principle. The governing equations and the associated boundary conditions are transferred to eigenvalues problem which provides the information about the dynamic characteristics of the system. Numerical analysis is performed by using extended Gelerkin method. Critical velocity of fluid is investigated by increasing fiber angle and mass ratio of fluid to pipe including fluid.

  • PDF

Stability Analysis of a Straight Pipe with Time Dependent Flow (내부에 변동하는 유동을 갖는 직선 파이프의 안정성 해석)

  • Hong, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.318-324
    • /
    • 2004
  • The stability of a simply supported straight pipe is investigated. The time dependent flow is assumed to vary harmonically about a constant mean velocity. Stability conditions and dynamic reponses of a governing equation are conducted by use of multiple scale mettled. Parametric resonances and combination resonances are investigated. Stability boundaries are analytically determined. The resulted stability conditions show that instabilities exist when the frequency of flow fluctuation is close to two times the natural frequency or to the sum of any two natural frequencies. In case that the fluctuated flow frequency is close to zero or to the difference of two natural frequencies, however, instabilities are not found up to the first order of perturbation. Stability charts are numerically Presented fir the first two vibration modes.

Experimental Verification on Dynamic Stability of a Vertical Cantilevered Pipe with Attached Masses Conveying Fluid (복수 부가질량을 갖고 유동유체에 의한 수직외팔 파이프의 동적안정성에 관한 실험적 검증)

  • 김삼일;정승호;류봉조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.208-215
    • /
    • 2001
  • The paper presents both theoretical and experimental study fur dynamic instabilities of a vortical cantilevered pipe with two attached lumped masses conveying fluid. The two attached lumped masses can be considered as valves or some mechanical paras in real pipe systems. Eigenvalue behaviors depending on the flow velocity are investigated for the change of Positions and magnitudes of an attached lumped mass and a tip mass. In order to verify appropriate of numerical solutions, experiments were accomplished. Theoretical predictions have a good agreement with experimental ones.

  • PDF

Dynamic Stability of a Vertical Cantilevered Pipe Conveying Fluid with Additional Spring Supports (부가 스프링 지지를 갖고 유동유체에 의한 외팔 수직 파이프의 동적 안정성)

  • Ryu, Bong-Jo;Jung, Seoung-Ho;Lee, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.979-985
    • /
    • 2002
  • The paper presents the dynamic stability of a vertical cantilevered pipe conveying fluid and haying translational linear spring supports. Real pipe systems may have some elastic hanger supports or other mechanical attached parts. which can be regarded as attached spring supports. Governing equations are derived by energy expressions, and numerical technique using Galerkin's method is applied to the equations of small motion of the pipe. Effects of spring supports on the dynamic stability of a vortical cantilevered pipe conveying fluid are fully investigated for various locations and spring constants of elastic supports.