• Title/Summary/Keyword: 유동 시뮬레이션

Search Result 609, Processing Time 0.034 seconds

Analyses of Scenarios Based on a Leakage of Highly Compressed Air and Fire Anticipated in CAES (Compressed Air Energy Storage) Facility (압축공기에너지저장 시설에서 발생 가능한 압축공기 유출 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.568-576
    • /
    • 2015
  • In this study, scenarios based on the leakage of highly compressed air and fire occurrence turned out to be high risks in an operation stage of CAES facility were constructed and estimated. By combining Bernoulli equation with momentum equation, an expression to calculate an impact force of a jet flow of compressed air was derived. An impact force was found to be proportional to the square of diameter of fracture and the pressure of compressed air. Four types of fire scenarios were composed to evaluate an effects that seasonal change and location of fire source have on the spread behavior of smoke. Smoke from the fire ignited in the vicinity of CAES opening descended more quickly below the limit line of breathing than one from the fire occurred 10 m away from CAES opening, which is expected to occur due to a propagation of wave front of smoke. It was shown that a rate of smoke spread of the winter fire is faster than one of the summer fire and smoke from the winter fire spreads farther than one of the summer fire, which are dependent on the direction of air flow into access opening. Evacuation simulation indicated that the required safe evacuation time(RSET) of the summer and winter fires are 262, 670 s each.

A Numerical Study for Fire Safety Evaluation of the Multi-story Residential Buildings -The Effects of the Openings of Stairwell on Fire Characteristics- (다세대주택의 화재안전평가에 대한 수치해석 연구 -계단실 개구부의 개폐가 화재특성에 미치는 영향-)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2007
  • In the events of a fire in the residential building, highly flammable polyurethane foam sofa produce toxic smokes. In this type of fire, the residents of the building can be gotten into the difficulties of evacuating from the fire places or may be to death due to a lot of hot toxic gases. In this study, CFD simulations were carried out to study the effects of the openings of stairwell on the fire characteristics of fire room and stairwell. Also, analysis of fire hazard based on the tenability limits of fire and FED(fractional effective dose) was performed to evaluate the life safety of the residents of the building. In the fire room, maximum temperature was about $290^{\circ}C$, maximum CO concentration was about 4,740 ppm, and the time to incapacitation of residents in fire room was about t=144 s. In the stairwell, temperature and CO concentration in the condition of openings to be open were even lower than those in it to be closed. Time to the tenability limit with respect to smoke visibility in the stairwell with openings, which was open, was shorter than that of it without openings to be open. It has been shown from this study that opening the stairwell openings is able to decrease the fire hazards to the life safety in the multi-story residential building fire.

A Study on Design of Vacuum Silo for Batch Treatment System for Dredged Soil (준설토 일괄처리시스템을 위한 진공사이로 설계에 관한 연구)

  • Kim, Yong-Seok;Yang, Hae-Rim;Kim, Hac-Sun;Jeoung, Chan-Se;Yang, Soon-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.571-577
    • /
    • 2012
  • In this study, a small movable batch treatment system for dredging soil deposited in a rain water tube is proposed; further, a vacuum silo sorting separation device with a vacuum silo, first-stage sorting separator, and conveyor is designed. The vacuum silo sorting separation device also consists of a storage tank, transferring screw, vacuum gate, screen bar, screen bar cleaner, and vacuum discharging device. In view of the fact that the flow of drawn air in the storage tank is a major factor influencing the sorting separation performance, the optimum shape of the tank is determined by CFD flow analysis. In addition, by using CAE structure analysis, the safety of a storage tank made of boards is examined. The specifications of the vacuum silo sorting separation device are determined by conducting mechanical and dynamic simulations of the driving mechanism of the vacuum silo sorting separation device through 3D-CAD modeling. Following this study, we will design a drum-screen-type second sorter, a decanter-type dehydration device, and waste water tank and pump as a secondary device. Further, on the basis of this design, we will construct a prototype model and carry out a field test.

Reduced-scale Model Experiment for Examination of Natural Vent and Fire Curtain Effects in Fire of Theater Stage (공연장 무대부 화재 시 자연배출구 및 방화막 영향 검토를 위한 축소모형 실험)

  • Baek, Seon A;Yang, Ji Hyun;Jeong, Chan Seok;Lee, Chi Young;Kim, Duncan
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.41-49
    • /
    • 2019
  • In the present experimental study, based on a real-scale theater, a 1/14 reduced-scale model was constructed, and the effects of natural vent and fire curtain in fire of a theater stage were investigated. The case without fire curtain under the opened natural vent showed lower temperatures in the stage, whereas the case with fire curtain under the opened natural vent showed lower temperatures in the auditorium. On the other hand, through analyzing the starting time of the temperature rise at the point near the proscenium opening in the auditorium, it was found that the opened natural vent condition can delay the starting time of smoke spread from the stage to the auditorium and suppress the temperature rise in the auditorium. Under the present experimental conditions, the fire curtain installation did not affect significantly the velocity and mass flow rate of the outflow through the natural vent of the stage, which might be due to openings in the stage. The present results can be used to examine the effects of natural vent and fire curtain in a real-scale fire of a theater and to check the accuracy of the numerical simulation code.

Modeling Three-dimensional Free Surface Flow around Thin Wall Incorporation Hydrodynamic Pressure on δ-coordinate (δ-좌표계에서 동수압 계산 수중벽체 인근흐름 수치모형실험)

  • Kim, Hyo-Seob;Yoo, Ho-Jun;Jin, Jae-Yul;Jang, Chang-Hwan;Lee, Jung-Su;Baek, Seung-Won
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.327-336
    • /
    • 2014
  • Submerged thin walls are extreme case of submerged rectangular blocks, and could be used for many purposes in rivers or coastal zones, e.g. to tsunami. To understand flow characteristics including flow and pressure fields around a specific submerged thin wall a numerical model was applied which includes computation of hydrodynamic pressure on ${\sigma}$-coordinate. ${\sigma}$-coordinate has strong merits for simulation of subcritical flow over mild-sloped beds. On the other hand ${\sigma}$-coordinate is quite poor to treat sharp structures on the bed. There have been a few trials to incorporate dynamic pressure in ${\sigma}$-coordinate by some researchers. One of the previous approaches includes process of sloving the Poisson equation. However, the above method includes many high-order terms, and requires long cpu for simulation. Another method SOLA was developed by Hirt et al. for computation of dynamic pressure, but it was valid for straight grid system only. Previous SOLA was modified for ${\sigma}$-coordinate for the present purpose and was adopted in a model system, CST3D. Computed flow field shows reasonable behaviour including vorticity is much stronger than the upstream and downstream of the structure. The model was verified to laboratory experiments at a 2DV flume. Time-average flow vectors were measured by using one-dimensional electro-magnetic velocimeter. Computed flow field agrees well with the measured flow field within 10 % error from the speed point of view at 5 profiles. It is thought that the modified SOLA scheme is useful for ${\sigma}$-coordinate system.

Borrowing Constraints and the Marginal Propensity to Consume (차입제약과 한계소비성향)

  • Bishop, Thomas;Park, Cheolbeom
    • KDI Journal of Economic Policy
    • /
    • v.33 no.4
    • /
    • pp.1-25
    • /
    • 2011
  • Available evidence suggests that the average marginal propensity to consume (MPC) from the 2001 tax rebate in the US was not nearly as large as that from previous tax cuts. We examine if this phenomenon can be explained by the fact that the widespread use of credit cards has made borrowing accessible for most US households by constructing a model that simulates the dynamic effect of relaxed borrowing constraints. Our model uses Kreps-Porteus preferences which account for independent measures of relative risk aversion and the elasticity of intertemporal substitution, both of which can theoretically affect the willingness to save or spend. Our model shows that the average MPC drops substantially immediately after borrowing constraints are relaxed because few consumers have binding borrowing constraints at that time. The model also shows that consumers gradually reduce their wealth after borrowing constraints are relaxed, causing more of them to have binding constraints over time, which in turn causes the average MPC to rise gradually to a new steady state value that is slightly lower than the original value. This dynamic pattern of the MPC suggests that a greater ability to borrow with credit cards could explain the lower effectiveness of the 2001 tax rebate. In addition, the model predicts that consumers choose to hold lower amounts of liquid assets for precautionary reasons when they have a greater ability to borrow unsecured debt.

  • PDF

Numerical Analysis on the Flow in Cannulae having Side Holes (사이드 홀을 가진 케뉼라에 관한 수치해석적 연구)

  • Park Joong Yull;Park Chan Young;Min Byoung Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.489-496
    • /
    • 2004
  • Insertion of cannulae into vessels may disturb the blood flow doing non-physiological load and stress on blood cells such that ADP may increase and result in hemolysis. Authors used the computational method to simulate the 3-dimensional blood flow inside of the cannula using numerical method. We limited the research to within the drainage cannulae with side holes inserted through the human vein. In this paper, 9 different cannulae with side holes categorized by the number of side holes of 4, 12, and 20, and also categorized by the array type of side holes of staggered array, in-line array, and alternative in-line array were studied and compared to the cannula with no side holes by using CFD analysis. We evaluated the flow rate, the wall shear stress, and the shear rate and compared them with one another to estimate the effect of the side holes. The flow rate is not proportional to the number of the side holes. However, larger number of side holes can reduce the mean shear rate. Both the number and the array type of side holes play an important role on the fluid dynamics of the blood flow in cannulae.

Comparison of the Flame Height of Pool Fire according to Combustion Models in the FDS (FDS의 연소모델에 따른 풀화재의 화염높이 비교)

  • Han, Ho-Sik;Hwang, Cheol-Hong;Oh, Chang Bo;Choi, Dongwon;Lee, Sangkyu
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.42-50
    • /
    • 2018
  • The effect of sub-grid turbulence and combustion models on the mean flame height in a heptane pool fire according to the Fire Dynamics Simulator (FDS) version (5 and 6) based on Large Eddy Simulation (LES) was examined. The heat release rate for the fire simulation was provided through experiments performed under identical conditions and the predictive performance of the mean flame height according to FDS version was evaluated by a comparison with the existing correlation. As a result, the Smagorinsky and Deardorff turbulence models applied to FDS 5 and 6, respectively, had no significant effects on the mean flow field, flame shape and flame height. On the other hand, the difference in pool fire characteristics including the mean flame height was due mainly to the difference in the mixture fraction and Eddy Dissipation Concept (EDC) combustion models applied to FDS 5 and 6, respectively. Finally, compared to FDS 6, FDS 5 provided the predictive result of a significantly longer flame height and more consistent mean flame height than the existing correlation.

Development of Numerical Method for Large Deformation of Soil Using Particle Method (입자법을 이용한 토사의 대변형 해석법 개발)

  • Park, Sung-Sik;Lee, Do-Hyun;Kwon, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.35-44
    • /
    • 2013
  • In this study, a particle method without using grid was applied for analysing large deformation problems in soil flows instead of using ordinary finite element or finite difference methods. In the particle method, a continuum equation was discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. Soil behavior changes from solid to liquid state with increasing water content or external load. The Mohr-Coulomb failure criterion was incorporated into the particle method to analyze such three-dimensional soil behavior. The yielding and hardening behavior of soil before failure was analyzed by treating soil as a viscous liquid. First of all, a sand column test without confining pressure and strength was carried out and then a self-standing clay column test with cohesion was carried out. Large deformation from such column tests due to soil yielding or failure was used for verifying the developed particle method. The developed particle method was able to simulate the three-dimensional plastic deformation of soils due to yielding before failure and calculate the variation of normal and shear stresses both in sand and clay columns.

Ship Stability Calculation for Cause Analysis of No. 501 Oryong Sinking Accident (제501 오룡호 침몰사고 원인분석을 위한 선박 복원성 계산)

  • Lee, Jae-Seok;Chung, Young-Gu;Kim, Jee-Hun;Park, Ji-Hoon;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.459-468
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sank to the bottom of the Bering Sea. The tragic accident was attributed to rough sea weather after a fishing operation in the Bering Sea, and led to the death or loss of many crewmen. In this study, the ship stability calculation was carried out using KST-SHIP (ship calculation system of KST), considering the free surface effect and fish catch arrangement according to the progress of its sinking accident, and stability after flooding was analyzed. The calculation results obtained using KST-SHIP were verified by comparing them to intact stability calculation sheet of the accident ship under the full load departure condition, and intact stability according to displacement from the departure of accident ship up to the moment of the accident was calculated and analyzed. The stability after flooding was also calculated and analyzed according to the progress during its sinking accident.