• Title/Summary/Keyword: 유동효율

Search Result 1,446, Processing Time 0.027 seconds

Control of the Pressure Oscillation in a Supersonic Cavity Flow Using a Sub-cavity (Sub-cavity를 이용한 초음속 공동유동의 압력진동 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.310-313
    • /
    • 2006
  • The present study aims at investigating the effectiveness of a new passive cavity flow control technique, sub-cavity. The characteristics of cavity flow oscillation with the device are compared with those with other control techniques tested previously, including a triangular bump and blowing jet. In the computation, the three-dimensional, unsteady Navier-Stokes equations governing the supersonic cavity flow are solved based on an implicit finite volume scheme spatially and multi-stage Runge-Kutta scheme temporally. Large eddy simulation (LES) is carried out to properly predict the turbulent features of cavity flow. The present results show that the pressure oscillation near the downstream edge dominates overall time-dependent cavity pressure variations, and the amplitude of the pressure oscillation can be reduced in the presence of a sub-cavity.

  • PDF

반도체 제조라인의 냉수 시스템 효율성 증대에 관한 연구

  • 김기운;김광선;곽승기;박만호
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.253-258
    • /
    • 2004
  • 21C 정보화시대를 맞이하여 반도체 산업이 급속하게 발전함에 따라 컴퓨터를 활용한 효율성이 높은 유틸리티 관리 시스템(New Utility Management System) 기술이 중요시되는 추세이다. 본 연구에서는 유틸리티 관리시스템의 한 부분인 냉수 시스템에 대해 정상상태 유동해석을 통하여 각 구성 요소에서의 유량 및 압력, 온도를 제공할 수 있는 컴퓨터해석시스템을 구현하였다. 효율성 증대를 위해 펌프 위치에 따른 시스템 변화를 파악하여 시스템에 영향을 크게 미칠 수 있는 펌프 즉, 가동하면 효율적인 펌프를 결정하였으며 최적의 리턴라인(Return Line) 위치를 설계하였다. 이 결과는 운전 및 관리의 효율성 증대와 에너지 절감을 위하여 매우 유익한 활용이 가능하다.

  • PDF

Theoretical approach on the effective heat exchanger design using boundary layer theory (경계층 이론을 이용한 고효율 열교환기 설계를 위한 이론적 접근법)

  • Lee, Dong-Yeon;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5655-5660
    • /
    • 2012
  • The objective of this study is theoretically to suggest the effective heat exchanger design method using boundary layer analysis. The boundary layer formation and interruption on rectangular plate and round plate fins are explained and the heat transfer coefficients showed with the variation of the velocity and temperature boundary layer. In addition, the flow pattern on one plate fin surface considered as external flow and flow pattern between fins considered as internal flow. As a result, theoretical method for the boundary layer interruption avoidance is suggested and the heat transfer coefficient of the round plate fin was higher than that of the rectangular plate fin because of the less thermal and velocity boundary layer thickness except the centerline.

The Study of fire Driven flow and Smoke Exhaust Efficiency for PSD Installation Subway Station (PSD 설치역사의 화재유동 및 배연 효율 연구)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Kim, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1054-1061
    • /
    • 2009
  • This research was performed with emphasis on fire driven flow behavior and smoke exhaust efficiency which depend on the presence of PSD which are being installed domestically and overseas. For simulation, Jung-ang-ro station of Dae-gu subway station was chosen as model, and fire driven flow analysis was performed by using FDS as flow analysis code. Since many calculation time are required for calculation due to increase in the number of grid as the entire station is modeled, simulation was conducted in parallel processing technique. The fire driven flow analysis was analyzed case by case with composing fire scenario to compare fire driven flow and smoke exhaust efficiency changes depending on the presence of PSD. For fire scale, fire strength of 10MW was studied by referring to NFPA-l30. The calculation results were analyzed with focus on passenger safety by referring to NFPA-130.

  • PDF

Effects of Cylinder Rotation on Particle Laden Flow and Particle Deposition on a Rotating Circular Cylinder (실린더의 회전이 원형 실린더 주위의 입자 부유 유동 및 입자 부착에 미치는 영향)

  • Lee, Seungwoo;Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.239-248
    • /
    • 2017
  • It is important to understand the dispersion and deposition characteristics of particles in the flow around a circular cylinder. The rotation of a cylinder is considered as a means to modify the particle deposition in this study. We numerically investigate the effects of the rotational speed of a cylinder and the particle Stokes number on particle dispersion and deposition as well as flow characteristics. Results show that the deposition efficiency of small particles (with the Stokes number smaller than 4) decreases significantly as the rotational speed increases. However, when the Stokes number is larger than 4, the deposition efficiency increases slightly with the rotational speed of the cylinder. Meanwhile, for a given rotational speed, the increase in the Stokes number leads to an increase in deposition efficiency and deposited area.

A Study of the Thrust Vectoring Control Using Secondary Co- and Counter-Streams (2차 순유동과 역유동을 이용한 추력벡터 제어법에 관한 연구)

  • Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.109-112
    • /
    • 2004
  • Of late, the thrust vectoring control, using fluidic co-flow and counter-flow concepts, has been received much attention since it not only improves the maneuverability of propulsive engine but also reduces an additional material load due to the trailing control wings, which in turn reduce the aerodynamic drag. However, the control effects are not understood well since the flow field involves very complicated non: physics such as shock wave/boundary layer interaction, separation and significant unsteadiness. Existing data are not enough to achieve the effectiveness and usefulness of the thrust vectoring control, and systematic work is required for the purpose of practical applications In the present study, computational study has been performed to investigate the effects of the thrust vector control using the fluidic co-and counter-flow concepts. The results obtained show that, for a given pressure ratio, the thrust deflection angle has a maximum value at a certain suction flow rate, which is at less than $5\%$ of the mass flow rate of the primary jet. With a longer collar, the same vector angle is achievable with smaller mass flow rate.

  • PDF

Numerical Study of Unsteady Supersonic Flow Behind a Rearward-Facing Step with Slot Injection (측면제트분사가 있는 후향계단 후류의 비정상초음속유동에 대한 수치적 연구)

  • Kim,Jong-Rok;Kim,Jae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.97-103
    • /
    • 2003
  • Numerical research has been done for the transverse jet behind a rearward-facings step in turbulent supersonic flow without chemical reaction. Purpose of transverse jet is to enhance mixing of the fuel in the combustor. Two-dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated with the Navier-Stokes equations with two-equation k-$\varepsilon$ turbulence model. Numerical method is used high-order upwind TVD scheme. Eight cases are computed for different slot momentum flux ratios and slot position at downstream of the step. The flow is very similar to the cavity flow, because the jet acts as an obstacle. The numerical results thus show the periodic phenomenon.

Experimental investigation on the heat transfer characteristics of an oscillatory pipe flow (원관 내 왕복유동에 따른 열전달특성의 실험적 연구)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1959-1970
    • /
    • 1996
  • Effects of oscillatory flow upon heat transfer characteristics have been studied experimentally for oscillating flow in a circular tube. The experimental apparatus was designed to simulate the heat exchangers of the Stirling or Vuilleumier cycle machines and the test section consists of heater and cooler. Measurements were presented of heat flux, axial wall temperature distribution, and radial temperature profile of the working fluid for several cases of oscillation frequency and swept distance ratio. The influences of two main parameters, frequency and tidal displacement of the oscillation were investigated. Then the heat transfer coefficient at the heater is obtained. The carried by the authors with a assumption of oscillatory laminar slug flow.