DOI QR코드

DOI QR Code

Effects of Cylinder Rotation on Particle Laden Flow and Particle Deposition on a Rotating Circular Cylinder

실린더의 회전이 원형 실린더 주위의 입자 부유 유동 및 입자 부착에 미치는 영향

  • Lee, Seungwoo (Dept. of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Kim, Dongjoo (Dept. of Mechanical Engineering, Kumoh National Institute of Technology)
  • 이승우 (금오공과대학교 기계공학과) ;
  • 김동주 (금오공과대학교 기계공학과)
  • Received : 2016.09.26
  • Accepted : 2017.01.24
  • Published : 2017.04.01

Abstract

It is important to understand the dispersion and deposition characteristics of particles in the flow around a circular cylinder. The rotation of a cylinder is considered as a means to modify the particle deposition in this study. We numerically investigate the effects of the rotational speed of a cylinder and the particle Stokes number on particle dispersion and deposition as well as flow characteristics. Results show that the deposition efficiency of small particles (with the Stokes number smaller than 4) decreases significantly as the rotational speed increases. However, when the Stokes number is larger than 4, the deposition efficiency increases slightly with the rotational speed of the cylinder. Meanwhile, for a given rotational speed, the increase in the Stokes number leads to an increase in deposition efficiency and deposited area.

원형 실린더 주위의 유동에 부유된 입자가 실린더 근처에서 분산되거나 실린더에 부착되는 특성을 이해하는 것이 중요하다. 본 연구에서는 입자의 부착을 조절하는 방안으로 실린더의 회전을 고려해 보았고, 실린더의 회전 속도 및 입자의 Stokes 수가 실린더 주위의 유동과 입자의 분산 및 부착 특성에 미치는 영향을 수치해석적으로 연구하였다. 해석 결과 4보다 작은 Stokes 수에서는 회전속도가 증가함에 따라 부착효율이 크게 감소하였고, 4보다 큰 Stokes 수에서는 회전속도가 증가함에 따라 부착효율이 다소 증가하였다. 한편, 회전속도가 일정한 경우에는 Stokes 수가 증가함에 따라 입자의 부착효율이 증가하고, 입자의 부착 위치도 넓어졌다.

Keywords

References

  1. Williamson, C. H. K., 1996, "Vortex Dynamics in the Cylinder Wake," Annual review of fluid mechanics, Vol. 28, pp. 477-539. https://doi.org/10.1146/annurev.fl.28.010196.002401
  2. Norberg, C., 2001, "Flow around a Circular Cylinder: Aspects of Fluctuating Lift," J. Fluids Struct, Vol. 15, No. 3-4, pp. 459-469. https://doi.org/10.1006/jfls.2000.0367
  3. Thomas, F. O., Kozlov, A. and Corke, T. C., 2008, "Plasma Actuators for Cylinder Flow Control and Noise Reduction," AIAA J., Vol. 46, No. 8, pp. 1921-1931. https://doi.org/10.2514/1.27821
  4. Yao, J., Zhao, Y., Hu, G., Fan, J. and Cen, K., 2009, "Numerical Simulation of Particle Dispersion in the Wake of a Circular Cylinder," Aerosol Sci. Technol., Vol. 43, No. 2, pp. 174-187. https://doi.org/10.1080/02786820802549441
  5. Haugen, N. E. L. and Kragset, S., 2010, "Particle Impaction on a Cylinder in a Crossflow as Function of Stokes and Reynolds Numbers," J. Fluid Mech., Vol. 661, pp. 239-261. https://doi.org/10.1017/S0022112010002946
  6. Li, X., Zhou, H. and Cen, K., 2008, "Influences of Various Vortex Structures on the Dispersion and Deposition of Small Ash Particles," Fuel, Vol. 87, No. 7, pp. 1379-1382. https://doi.org/10.1016/j.fuel.2007.07.007
  7. Haugen, N. E. L., Kragset, S., Bugge, M., Warnecke, R. and Weghaus, M., 2013, "MSWI Super Heater Tube Bundle: Particle Impaction Efficiency and Size Distribution," Fuel Process. Technol., Vol. 106, pp. 416-422. https://doi.org/10.1016/j.fuproc.2012.09.007
  8. Mavridou, S. G. and Bouris, D. G., 2012, "Numerical Evaluation of a Heat Exchanger with Inline Tubes of Different Size for Reduced Fouling Rates," Int. J. Heat Mass Transfer, Vol. 55, No. 19-20, pp. 5185-5195. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.020
  9. Kang, S., Choi H. and Lee, S., 1999, "Laminar Flow Past a Rotating Circular Cylinder," Phys. Fluids, Vol. 11, No. 11, pp. 3312-3321. https://doi.org/10.1063/1.870190
  10. Stojkovic, D., Breuer, M. and Durst, F., 2002, "Effect of High Rotation Rates on the Laminar Flow around a Circular Cylinder," Phys. Fluids, Vol. 14, No. 9, pp. 3160-3178. https://doi.org/10.1063/1.1492811
  11. Morsi, S. A. and Alexander, A. J., 1972, "An Investigation of Particle Trajectories in Two-Phase Flow Systems," J. Fluid Mech., Vol. 55, No. 2, pp. 193-208. https://doi.org/10.1017/S0022112072001806