• Title/Summary/Keyword: 유동층 보일러애시

Search Result 23, Processing Time 0.024 seconds

Feasibility Study on the Use of CFBC Ash as Non-sintered Binder (순환유동층 보일러애시를 활용한 비소성 결합재로써의 활용 가능성 검토)

  • Kang, Yong Hak;Lim, Gwi Hwan;Kim, Sang Jun;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.119-126
    • /
    • 2018
  • Recently, the production of circulating fluidized bed combustion ash has been increased in thermal power plants. The addition of limestone for the desulfurizing effect of circulating fluidized bed boiler ash increases the content of CaO and $SO_3$ contained in ash, which is higher than the free fly ash in general fly ash. Unlike conventional fly ash, the circulating fluidized bed combustion ash has a high reactivity when it comes into contact with water due to its hydraulic properties and high free-CaO content. The aim of this study is to investigate the possibility of non-sintered binder by using self-cementing properties of circulating fluidized bed combustion ash. The mechanical and hydration characteristics were investigated according to the content of CFBC ash. In addition, the effects of gymsum type and content on the compressive strength and micro-structure of non-sintered binder pastes.

A Study on the Mechanical Properties of Polymer Repair-Mortars with CFBC Ash (순환유동층 보일러애시를 활용한 폴리머 보수 모르타르의 역학적 특성에 대한 연구)

  • Kang, Yong Hak;Lim, Gwi Hwan;Shin, Dong Cheol;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.127-132
    • /
    • 2018
  • The amount of generated Circulating Fluidized Bed Combustion ash (CFBC ash) is annually increasing, but most CFBC ash has been landfilled and discarded due to the limited utilization. The major chemical compositions of CFBC ash are $SiO_2$, CaO and $CaSO_4$, which could form hydration products by reacting with water as self-cementing property such as cement. The purpose of the this study is to derive the optimal mix proportions to improve polymer-modified mortar with the use of CFBC ash which has the self-cementing property. In order to develop polymer-modified mortar, three mix proportions were determined, and fundamental properties for the mixtures were obtained. As a result, the optimal mixture containing 10 percent of silica fume, 1.0 percent of polymer and 3.5 percent of expansive additives were proposed in this study.

Basic characteristic of non-sintered binder using by CFBC ash (순환유동층 보일러애시를 활용한 비소성 결합재 기초 특성)

  • Kang, Yong-Hak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.225-226
    • /
    • 2017
  • Recently, there has been a growing interest in the development of non-sintered binder to reduce CO2 emissions from the cement clinker manufacturing process and a number of studies have been conducted on fly ashes as an industrial by-product. However, in order to utilize fly ashes as a non-sintered binder, it is necessary to solve problems such as safety issues and economical efficiency due to use of an alkali activator. This study evaluates the material properties and compressive strength characteristics of three types of circulating fluidized bed boiler ashes. As a result, it was confirmed that the characteristics of each binder vary depending on the location of the power plant and the types of raw materials. In addition, it has been confirmed that the fluidized bed boiler ash shows a high compressive strength and can be used sufficiently as an non-sintered binder.

  • PDF

A Study on the Pozzolan Reactivity and Mechanical Characteristic of Blended Portland Cements using CFBC Fly Ash (순환유동층 플라이 애시를 사용한 혼합시멘트의 포졸란 반응성과 역학적 성질에 관한 연구)

  • Park, JongTak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • Nowadays, circulating fluidized bed combustor(CFBC) boilers system that can reduce environmental pollution particles are widely used in electric power plants. But the fly ash generated from CFBC boilers has lower $SiO_2$ and higher MgO and $SO_3$ contents and also has free CaO inducing expansion and abrupt initial setting of concrete. Therefore, revised KSL5405 for CFBC fly-ash as well as pulverized coal combustion(PCC) is introduced in the concrete field. In this study, the chemical properties and mechanical properties of blended cements with PCC and CFBC fly-ash produced in Korea are analyzed. The blended cement with only CFBC fly ash shows a lower length change than OPC but a higher flow change ratio. The compressive strength of blended cement paste with PCC and CFBC fly ash is slightly greater than that of cement paste with only PCC fly-ash. Based on the results, CFBC flyash blended cement products should be used with PCC flyash to ensure the material stability and material properties.

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash (순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.165-172
    • /
    • 2021
  • The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.

Mechanical Properties of Non-cement Matrix Utilizing the Circulating Fluidized Bed Combustion Boiler Fly Ash and Dyeing Sludge Carbide (염색슬러지 탄화물과 순환 유동층 연소 보일러 플라이애시를 활용한 무시멘트 경화체의 역학적 특성)

  • Kim, Tae-Hyun;Lee, Seung-Ho;Lee, Yong;Shin, Jin-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.425-430
    • /
    • 2016
  • Both rapid industrial development and society has achieved more comfortable life. But, behind this facts of this industrial development have current pictures that occur global warming and much more by-products by environmental pollution. Therefore, this study used BFS and CFA as by-products to reduce cement usage emitted at a high rate of $CO_2$ gas, to examine sludge recycling strategy more than 200,000ton emitted at local dyeing complex, we suggest basic data research about non-cement matrix properties of utilizing dyeing sludge carbide. As a result, the more dyeing sludge carbide replacement ratio gets higher, the more air content and flow rise. Also, as the dyeing sludge carbide replacement ratio increase more, flexural strength and compressive strength go down.

Hydration and Insulation Characteristics of a Ground Granulated Blast Furnace Slag Based Non-Sintered Cement Using Circulating Fluidized Bed Combustion Ash as a Activator (순환유동층 애시를 자극제로 사용한 고로슬래그 미분말 기반 비소성 시멘트의 수화 및 단열 특성)

  • Lee, Seung-Heun;Lee, Gang-Hyuk;Yoo, Dong-Woo;Ha, Ju-Hyung;Cho, Yun-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2015
  • As people have more interest in environment-friendly structures recently, many researchers are actively researching non-sintered cement in Korea and other countries. Non-sintered cement shows various characteristics of its reaction products and hardeners, depending on the kind of alkali activators. Thus, this study manufactures ground granulated blast furnace slag based non-sintered cement binder by using circulating fluidized bed combustion ash, which is a kind of industrial byproduct, as a stimulant, and investigated its hardening characteristics and hydration, depending on the rate of circulating fluidized bed combustion ash. Besides, this study investigated its insulation property according to the weight lightening of non-sintered cement. As a result, ettringite and C-S-H were mainly formed in the hydration, and it was possible to manufacture a non-sintered cement hardener over 50 MPa. Lastly, it was possible to manufacture a non-sintered cement hardener in a thermal conductivity level of $0.127W/m{\cdot}K$ when the compressive strength was 10 MPa for weight lightening.

The Feasibility Study for Utilization of Blended Cement as a Activator of Bottom Ash from Circulating Fluidized Bed Combuster Boiler (순환유동층 보일러 바텀애시의 혼합시멘트 자극제 활용을 위한 타당성 연구)

  • Park, JongTak;Jung, Gwon Soo;Kang, Chang Ho;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.255-262
    • /
    • 2020
  • Blended cement with fly ash and bottom ash from Circulating Fluidized Bed Combustor boiler(CFBC) burned at a low temperature, can be high heat of hydration and abnormal setting caused by higher volumn contents of Fe2O3, free-CaO, SO3. In this study, the ground CFBC bottom ash powder mixed with blast furnace slag was used as substitute activator of gypsum and recycled iron slag was produced from mix and pulverized by ball mill to increase the recycling rate. The effect on compressive strength of cements with the mixture of original and hydrated bottom ash mixtures with BFS with small water, respectively, was analyzed, and it was found that the hydrated bottom ash activator was more effective in initial strength development. To improve the initial strength of blended cement, an activator mixed with a blast furnace slag and bottom ash mixing ratio of 5:95 and 10:90, respectively, the slag cement by about 6%, and it was analyzed to develop an initial strength similar to gypsum as a conventional activator.