• Title/Summary/Keyword: 유동장 3차원 측정

Search Result 58, Processing Time 0.029 seconds

Evacuation characteristic measurement of anti-suck back centering by mini vacuum system (미니 진공시스템을 이용한 역류방지 센터링의 배기 특성 측정)

  • Hong, Gwang-Gi;Go, Seok-Il;Do, U-Ri;Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.255-256
    • /
    • 2009
  • The anti suck back centering (ASBC) for preventing backflow of oil for oil rotary pump was designed in the power failure. To evaluate the evacuation characteristics, we manufactured the mini vacuum system, personal computer, AD converter (National instrument, NI-6009), and automatic controller with touch panel for a basis. In this study, we measured the evacuation characteristics of ABSC and analyzed the flow field of viscous flow regime using a commercial software, CFD-ACE+. Also, the leakage of the advaced ASBC for leveling was measured.

  • PDF

The Effect of Reynolds Number on the Three-Dimensional Flow Measurements with a Two-Stage Cone-Type Five-Hole Probe in a Non-Nulling Mode (Reynolds 수가 2단 원추형 5공프로브를 이용한 3차원 유동 측정에 미치는 영향 - 저속 유동장에서의 보정 결과 -)

  • Lee, Sang-U;Jeon, Sang-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2002
  • The effects of Reynolds number on the non-nulling calibrations of a cone-type ave-type probe in low-speed flows have been investigated at Reynolds numbers of 2.04$\times$10$^3$, 4.09$\times$10$^3$and 6.13$\times$10$^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. In addition to the calibration coefficients, reduced pitch and yaw angles, static and total pressures, and velocity magnitude are obtained through a typical non-nulling reduction procedure. The result shows that each calibration coefficient, in general, is a function of both the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting far the full non-nulling calibration characteristics. Due to interference of the probe stem, the calibration coefficient are more sensitive to Reynolds number at positive pitch angles than at negative ones. The calibration data reduced in this study may serve as a guide line in the estimation of uncertainty intervals resulted from the Reynolds number effects at low Reynolds numbers.

Electrocardiogram-Gated Multi-Angle Doppler Optical Coherence Tomography (심전도 게이트를 사용한 다관점 도플러 광 단층촬영법)

  • Ahn, Yeh-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.685-691
    • /
    • 2011
  • The aim of this study is to point out the uniqueness of Doppler optical coherence tomography (DOCT) for use in a probe station for (in vivo) visualization of microscale flow and structure and to maximize the effectiveness of DOCT by overcoming its limitations. Conventional DOCT produces images of only one of the velocity components that is parallel to the incident light. In this study, a multi-angle DOCT to quantify a velocity vector field is proposed; this is an extension from a velocity scalar field to a vector field. Quantifying an instantaneous three-dimensional velocity field in a pulsating flow is another challenge because of its limited frame rate. The in-vivo pulsating blood flow is measured by using an electrocardiogram-gated multi-angle DOCT in a hamster cheek pouch model. It is shown that the aliasing problem caused by a relatively low frame rate is resolved by using this method of measurement.

A Cold model experiment on the thermal convection in the czochralski silicon single crystal growth process (저융점 금속을 사용한 초크랄스키 실리콘 단결정 성장 공정의 열유동 모사 실험)

  • 이상호;김민철;이경우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.149-156
    • /
    • 1999
  • An experimental simulation on the flow in Czochralski melt using a cold model was carried out to obtain the velocities of fluid flow which affects the oxygen concentration of Czochralski crystal growing system. Low melting point Woods metal with similar Pr number to the silicon melt was adopted as a working fluid. Local flow velocities at numerous positions in the melt were simulataneously measured in three dimension using incorporated magnet probe. The measured velocity field showed a non-axisymmetric pattern dominated by natural convection. The analysis on the correlation between data set of temperatures simultaneously measured at two melt positions showed that the values of correlation coefficients were smaller than those of previous study on the small size of silicon melt and these phenomena are believed to occur because turbulent behavior becomes stronger in large size of the melt.

  • PDF

Measurement of the Three-Dimensional Flow Fields of a Gun-Type Gas Burner Using Triple Hot-Wire Probe (3중 열선 프로브를 이용한 Gun식 가스버너의 3차원 유동장 측정)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.23-31
    • /
    • 2006
  • Mean velocities and turbulent characteristics in the three-dimensional flow fields of a gun-type gas burner were measured by using triple hot-wire probe (T-probe) in order to compare them with the results already presented by X-type hot-wire probe (X-probe). Vectors obtained by the measurement of two kinds of probes in the horizontal plane and in the cross section respectively show more or less difference in magnitude each other, but comparatively similar shape in overall distribution. Axial mean velocity component along the centerline shows that the value by T-probe is about ten times smaller than that by X-probe above the range of X/R=3. Also, the axial component of turbulent intensity along the centerline appears the biggest difference between the two probes. Moreover, axial mean velocity component, axial turbulent intensity component and rotational along the Y-directional distance show a big difference between slits and swirl vanes. On the whole, the values by T-probe appear smaller than those by X-probe.

  • PDF

The study of three dimentional flow field using defocusing method in micromixer (Defocusing 기법을 이용한 마이크로 믹서내의 3 차원 유동장 측정연구)

  • Kim, Su-Heon;Yoon, Sang-Youl;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.99-102
    • /
    • 2005
  • This study was conducted for obtaining the optimized data to build the mixer or micro fluid device as measuring the three dimensions flow field in micro mixer. To acquire the rapid diffusion on the region of low Reynolds (Re < 100), the staggered herringbone mixer using chaotic advection was selected in this case. At first, by conducting the numerical analytical virtual experiment using CFD-ACE+, three dimensions flow field in the micro mixer was estimated As this flow field was proven using defocusing particle tracing method, the behavior of micro flow with three dimensional aspects could be analyzed. Numerical analysis and flow pattern in the micro mixer by experimental verification made to be able to analyze the chaotic advection. These can be important sources for building more optimized form. Verifying the information of three dimensional flow structure, these information can be used as the data for developing and improving the $\mu$ -TAS.

  • PDF

Three-Dimensional Fluid Flow Analysis of Photoacoustic Spectroscopy Cell for Measurement of Automotive Exhaust Gas (자동차 배출가스 측정을 위한 Photoacoustic Spectroscopy Cell의 3차원 유동장 해석)

  • 김현철;박종호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Recently, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle. Especially, exhaust emission from diesel vehicles are blown to be harmful to human health and environment. Photoacoustic Spectroscopy system is very useful technology for simultaneous and continuous measurement of the various components of the automotive exhaust gas. In this study, in order to reduce emission gases from automobile, we tried to develop the measurement system of Photoacoustic Spectroscopy. To improve performance of high sensitive Photoacoustic Spectroscopy system for automotive exhaust emissions, the shape of Photoacoustic Spectroscopy cell was optimized to use the flow analysis. And Exhaust emission data of the 1,500cc gasoline engine was fixed the working fluid. The characteristics of fluid flow for cell were analyzed by various conditions in detail.

Experimental Study on Hydraulic Characteristics and Vorticity Interactions of Floating Breakwaters (부유식방파제의 수리특성 및 와 상호작용에 관한 실험적 연구)

  • Yoon, Jae Seon;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.55-55
    • /
    • 2011
  • 연안 및 해안공학의 발달과 더불어 부유식방파제의 기능적 효율성이 중요시 되고 있다. 흔히 사용되어오던 착저식방파제는 설치에 많은 시간과 경비가 소요되고 환경 및 생태계에 많은 변화를 줄 수 있으며, 설치 예정지의 수리학적 특성 등의 여건에 많은 제약을 받는 단점이 있다. 부유식방파제는 일본 등의 선진국을 중심으로 활용이 잦아지고 있는 방파제로서 수면 위에 설치되기 때문에 수중 생태계에 미치는 영향이 적은 친환경방파제이다. 또한 기존에 시공된 중력식방파제와는 달리 수심에 제한을 덜 받고, 공사기간이 짧기 때문에 경제적이다. 실제 시공사례로는 2007년 마산 원전항에 완공된 부유식방파제가 대표적이며, 지금까지도 부유식방파제에 대한 여러 연구자들의 관심이 증가하고 있는 추세이다. 방파제뿐만 아니라 우리나라처럼 국토의 면적이 작은 지역에서 증가하는 해상물동량을 소화하기 위해서 부유식방파제 등을 이용한 항만의 시공이 필요한 실정이다. 이러한 부유식방파제의 분석적인 측면에 있어서 수치해석은 파랑과 구조물의 상호작용을 해석하는 데 한계가 있으며, 부유식방파제 단면형상을 정확하게 재현할 수 없으므로, 수리모형실험을 통한 부유식방파제의 연구가 필요할 것으로 판단된다. 최근 기술의 발달로 인한 유동장 해명이 가능해 졌으며, PIV(Particle image velocimetry) 및 LDV시스템은 다양한 분야에서 응용되고 있다. 특히, LDV시스템은 측정하려는 한 지점에 대하여 레이저 빔을 단면(Cross-section)으로 만들고 입자의 산란광을 후방산란(Back scatter)으로 받아서 도플러 효과를 이용, 속도에 대한 주파수를 획득하며, 유속을 측정하는 장비로 매우 높은 정확도와 비접촉식 이라는 장점을 가지고 있다. 또한, PIV 시스템에 비하여 측정시간이 오래 걸리는 반면 데이터를 가공하지 않고 활용할 만큼 높은 정확성을 가지고 있다. 본 연구에서는 수리모형실험을 통하여 단독형, 2열형 및 3열형 부유식방파제의 형상, 흘수 및 거리를 변화시키며 유동장을 수집하였으며, 방파성능에 따른 와의 생성 및 소멸시점에서의 파랑변형과의 관계를 분석하였다. 방파제의 형상과 흘수를 달리하여 수리모형실험을 수행하였으며, 와류의 상관관계를 분석하였다. 또한, 연직 2차원 Navier-Stokes 방정식 모형을 이용하여 수치모형실험을 수행하였으며, 수치모형실험 결과와 수리모형실험 결과를 비교 분석하였다. 후방방파제에서 발생되는 파랑은 입사파의 주기가 길어질수록 상대적으로 커지는 현상을 보였으며, 흘수심이 깊어질수록 전방방파제 입사 면에서 자유 수면이 높게 관측되는 결과를 보였다. 또한, 비교적 장주기파랑에 해당하는 입사파랑의 경우 전달파고비 산정에 있어서 설계기준인 0.5를 대다수 초과하는 반면, 3열형 구조에서는 대부분이 0.5이하로 상당히 높은 방파성능 결과를 나타내었다.

  • PDF

PIV Measurements of Three-Dimensional Wake Around a Road Vehicle (자동차 후류에 대한 3차원 유동의 PIV 측정)

  • Kim Jinseok;Kim Sungcho;Sung Jaeyong;Kim Jeongsoo;Choi Jongwook
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.1-4
    • /
    • 2004
  • The PIV measurements are performed to get the quantitative flow visualization around a road vehicle. The model scaled with 1/48 is located in the middle test section of the closed-loop water tunnel and the measuring system consists of CCD camera, diode laser, synchronizer, and computer. The experimental data are obtained at two Reynolds numbers of 50,000 and 100,000 based on the model length. The quasi-three-dimensional isovorticity surfaces, based on two-dimensional velocity field data, are generated. There is little difference between the results in part of the recirculation region and the vorticity contour according to the Reynolds number. Also a little bit complicated three dimensional flows are predicted behind the road vehicle.

  • PDF

Numerical and experimental analysis of aerodynamics and aeroacoustics of high-speed train using compressible Large Eddy Simulation (압축성 대와류모사를 이용한 고속열차의 공력 및 공력소음의 수치적/실험적 분석)

  • Kwongi Lee;Cheolung Cheong;Jaehwan Kim;Minseung Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2024
  • Due to technological advances, the cruising speed of high-speed trains is increasing, and aerodynamic noise generated from the flow outside the train has been an important consideration in the design stage. To accurately predict the flow-induced noise, high-resolution generation of sound sources in the near field and low-dissipation of sound propagation in the far field are required. This should be accompanied by a numerical grid and time resolution that can properly consider both temporal and spatial scales for each component of the real high-speed train. To overcome these challenges, this research simultaneously calculates the external flow and acoustic fields of five high-speed train cars of real-scale and at operational running speeds using a threedimensional unsteady Large Eddy Simulation technique. To verify the numerical analysis, the measurements of the wall pressure fluctuation and numerical results are compared. The Ffowcs Williams and Hawking equation is used to predict the acoustic power radiated from the high-speed train. This research is expected to contribute to noise reduction based on the analysis of the aerodynamic noise generation mechanism of high-speed trains.