DOI QR코드

DOI QR Code

Electrocardiogram-Gated Multi-Angle Doppler Optical Coherence Tomography

심전도 게이트를 사용한 다관점 도플러 광 단층촬영법

  • Ahn, Yeh-Chan (Dept. of Biomedical Engineering, Pukyong Nat'l Univ.)
  • Received : 2010.12.10
  • Accepted : 2011.04.11
  • Published : 2011.07.01

Abstract

The aim of this study is to point out the uniqueness of Doppler optical coherence tomography (DOCT) for use in a probe station for (in vivo) visualization of microscale flow and structure and to maximize the effectiveness of DOCT by overcoming its limitations. Conventional DOCT produces images of only one of the velocity components that is parallel to the incident light. In this study, a multi-angle DOCT to quantify a velocity vector field is proposed; this is an extension from a velocity scalar field to a vector field. Quantifying an instantaneous three-dimensional velocity field in a pulsating flow is another challenge because of its limited frame rate. The in-vivo pulsating blood flow is measured by using an electrocardiogram-gated multi-angle DOCT in a hamster cheek pouch model. It is shown that the aliasing problem caused by a relatively low frame rate is resolved by using this method of measurement.

본 연구는 도플러 광 단층촬영법이 미세유동 및 미세구조를 동시에 측정하는 첨단 장비임을 보일뿐 아니라 기존의 도플러 광 단층촬영법의 한계를 극복한 새로운 방법을 제시하였다. 기존의 도플러 광단층촬영법은 샘플로 입사되는 광과 같은 방향의 속도성분만을 측정할 수 있다. 본 연구에서는 임의의 속도벡터의 세 성분을 동시에 측정할 수 있는 다관점 도플러 광 단층촬영법을 개발하였고 심전도 게이트를 사용하여 맥동혈류유동의 3 차원 공간 내에서 위상속도 벡터장을 측정하는 심전도 게이트 다관점 도플러 광 단층촬영법의 타당성 조사를 햄스터 모래주머니 모델을 사용하여 수행하였다. 이를 통해 측정 가능한 속도성분의 수를 증가할 뿐 아니라 프레임 레이트가 심박에 비해 상대적으로 느리기 때문에 발생하는 엘리아싱 문제를 해결하였다.

Keywords

References

  1. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K. and Puliafito, C. A., 1991, "Optical Coherence Tomography," Science, Vol. 254, p. 1178. https://doi.org/10.1126/science.1957169
  2. Chen, Z., Milner, T. E., Dave, D. and Nelson, J. S., 1997, "Optical Doppler Tomographic Imaging of Fluid Flow Velocity in Highly Scattering Media," Opt. Lett., Vol. 22, pp. 64-66. https://doi.org/10.1364/OL.22.000064
  3. Izatt, J. A., Kulkarni, M. D., Yazdanfar, S., Rollins, A. and Sjvak, M. V., 1999, "Doppler Flow Imaging Using Optical Coherence Tomography," US Patent #6006128.
  4. Ahn, Y.-C., Jung, W. and Chen, Z., 2008, "Optical Sectioning for Microfluidics: Secondary Flow and Mixing in a Meandering Microchannel," Lab Chip, Vol. 8, pp. 125-133. https://doi.org/10.1039/b713626a
  5. Meinhart, C. D., Wereley, S. T. and Santiago, J. G., 1999, "PIV Measurements in a Microchannel Flow," Exp. Fluids, Vol. 27, pp. 414-419. https://doi.org/10.1007/s003480050366
  6. Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J. and Adrian, R. J., 1998, "A Particle Image Velocimetry System for Microfluidics," Exp. Fluids, Vol. 25, pp. 316-319. https://doi.org/10.1007/s003480050235
  7. Zhao, Y., Chen, Z., Saxer, C., Shen, Q., Xiang, S., de Boer, J. F. and Nelson, J. S., 2000, "Doppler Standard Deviation Imaging for Clinical Monitoring of in Vivo Human Skin Blood Flow," Opt. Lett., Vol. 25, pp. 1358-1360. https://doi.org/10.1364/OL.25.001358
  8. Ren, H., Brecke, K. M., Ding, A., Zhau, Y., Nelson, J. S. and Chen, Z., 2002, "Imaging and Quantifying Transverse Flow Velocity with the Doppler Bandwidth in a Phase-Resolved Functional Optical Coherence Tomography," Opt. Lett., Vol. 27, pp. 409-411. https://doi.org/10.1364/OL.27.000409
  9. Dave, D. P. and Milner, T. E., 2000, "Doppler-Angle Measurement in Highly Scattering Media," Opt. Lett., Vol. 25, pp. 1523-1525. https://doi.org/10.1364/OL.25.001523
  10. Wu, L., 2004, "Simultaneous Measurement of Flow Velocity and Doppler Angle by the Use of Doppler Optical Coherence Tomography," Opt. Laser Eng., Vol. 42, pp. 303-313. https://doi.org/10.1016/j.optlaseng.2003.08.005
  11. Pedersen, C. J., Huang, D., Shure, M. A. and Rollins, A. M., 2007, "Measurement of Absolute Flow Velocity Vector Using Dual-Angle, Delay-Encoded Doppler Optical Coherence Tomography," Opt. Lett., Vol. 32, pp. 506-508. https://doi.org/10.1364/OL.32.000506
  12. Royset, A., Storen, T., Stabo-Eeg, F. and Lindmo, T., 2006, "Quantitative Measurements of Flow Velocity and Direction Using Transversal Doppler Optical Coherence Tomography," Proc. SPIE, Vol. 6079, 607925. https://doi.org/10.1117/12.647505
  13. Ahn, Y.-C., Jung, W. and Chen, Z., 2007, "Quantification of a Three-Dimensional Velocity Vector Using Spectral-Domain Doppler Optical Coherence Tomography," Opt. Lett., Vol. 32, pp. 1587-1589. https://doi.org/10.1364/OL.32.001587