• Title/Summary/Keyword: 유동불안정성

Search Result 155, Processing Time 0.019 seconds

Large-Eddy Simulation of Turbulent Flow in a Concentric Annulus with Rotation of the Inner Cylinder (안쪽 실린더가 회전하는 동심 환형관 내 난류 유동의 대형와 모사)

  • Chung, Seo-Yoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A large-eddy simulation is performed for turbulent flow in a concentric annulus with the inner wall rotation at Re$\sub$Dh/=8900 for three rotation rates N=0.2145, 0.429 and 0.858. Main emphasis is placed on the inner wall rotation effect on near-wall turbulent structures. Near-wall turbulent structures close to the inner wall are scrutinized by computing the lower-order statistics. The anisotropy invariant map for the Reynolds stress tensor and the invariant function are illustrated to reveal the altered anisotropy in turbulent structure. Probability density functions of the splat/anti-splat process are explored to develop a sufficiently complete picture of the contributions of the flow events to turbulent production. The present numerical results show that the altered turbulent structures may be attributed to the centrifugal instability, which leads to the augmentation of sweep and ejection events.

Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method (경계면 포착법에 의한 밀도차이에 따른 물질경계면을 갖는 다상유동 수치해석)

  • Myon, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.443-453
    • /
    • 2009
  • The Rayleigh-Taylor instability, the bubble rising in both partially and fully filled containers and the droplet splash are simulated by an in-house solution code(PowerCFD), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows with material interface due to both density difference and instability.

Numerical Simulation of Two-Dimensional Multiphase Flows due to Density Difference by Interface Capturing Method (경계면포착법에 의한 밀도차에 따른 다상유동 수치해석)

  • Myong, Hyon-Kook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.572-575
    • /
    • 2008
  • Two-dimensional multiphase flows due to density difference such as the Rayleigh-Taylor instability problem and the droplet splash are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present code simulates complex free surface flows such as multiphase flows due to density difference efficiently and accurately.

  • PDF

Numerical Study of Wavy Taylor-Couette Flow (II) -With an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (II) -축방향 유동이 있는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.705-712
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. The case without the axial flow was investigated in the preceding paper. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11(12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

Numerical Study of Wavy Taylor-Couette Flow(I) -Without an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (I) -축방향 유동이 없는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.697-704
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[J. Fluid Mech., 364, 1998]. They carried out experiment using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When Taylor number increases over the critical one, the flow instability caused by curved streamlines of the tangential flow induces Taylor vortices in the flow direction. As Taylor number further increases over another critical one, the steady Taylor vortices become unsteady and non-axisymmetrically wavy. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

Dynamic Stability and Response Analysis of Piping System with Internal Flow (내부에 유체가 흐르는 파이프계의 동적안정성 및 응답해석)

  • 이우식;박철희;홍성철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1861-1871
    • /
    • 1991
  • In this study, the piping system conveying unsteady flow is considered. The effects of coupling between the pipe motion and the velocity and pressure of fluid are included for the dynamic stability and response analysis of the piping system. The dynamic equations for a piping system are derived by Newtonian dynamics. For the momentum and continuity equations, the concept of moving control volume is applied. Thus, the governing equations derived herein are valid for the applications to the vibration problems occurred when a piping system starts up or shuts down and also when the valves and pumps operate. For a simply supported straight pipe, the stability analysis is conducted for various nondimensional parameters. The dynamic responses, in both stable and unstable region of stability chart, are numerically tested by the use of central difference method.

LES for Turbulent Duct Flow with Surface Mass Injection (질량분사가 있는 덕트 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.232-241
    • /
    • 2011
  • The hybrid rocket shows interesting characteristics of complicated mixing layer developed by the interaction between turbulent oxidizer flow and injected surface mass flow from fuel vaporization. In this study, the compressible LES was conducted to explore the physical phenomena of surface oscillatory flow induced by the flow interferences in a duct domain. From the numerical results, the wall injection generates the stronger streamwise vorticites and the negative components of axial velocity accompanied with the azimuthal vorticity near the surface. And the vortex shedding with a certain time scale was found to be developed by hydrodynamic instability in the mixing layer. The pressure fluctuations in this calculation exhibit a peculiar peak at a specific angular frequency($\omega$=8.8) representing intrinsic oscillation due to the injection.

A Numerical Study on the Factors of the Flow Hunting in a Orifice Meter (오리피스 유량계의 유동헌팅 영향인자에 관한 전산유체역학적 연구)

  • Shin, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.449-455
    • /
    • 2012
  • During the measurement of the flow rate of gases such as natural gas, flow hunting is observed in most orifice meters but the intensity of flow hunting at each metering system shows different characteristics. In order to investigate why such a difference occurs and whether the difference actually influences metering error, pipeline network analysis on the main factors and characteristics of flow hunting was carried out in a previous study. Following this, in this study, computational fluid dynamics (CFD) analysis was carried out to clarify the relation between flow instability and flow hunting and determine the factors influencing the orifice meter depending on the intensity of upward pressure fluctuation, time interval, and flow rate. Finally, we showed that the pressure hunting rate is a function of the ratio of the pressure difference before and after an orifice meter. On the basis of CFD analysis results, we also presented some major factors and relations influencing flow hunting.

Frequency Response of Turbulent Flow to Momentum Forcing in a Channel with Wall Blowing (질량분사가 있는 채널 내부 난류 유동의 외부교란에 대한 주파수 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.64-72
    • /
    • 2010
  • Due to the interaction between main oxidizer flow and the wall injected flow resulting from the regression process, a specific time characteristics identified in the frequency spectrum of streamwise velocity is generated in the hybrid rocket motor. In order to understand the response of the turbulent flow to two different types of external momentum forcing, LES analysis was conducted without considering the combustion. It turns out that both concentrated and distributed forcings do not lead to the disastrous resonance phenomenon. Energy contents are enhanced due to the added momentum but the peak frequency was not modified in the turbulent flow near the end of the rocket motor. Natural frequency of the flow system should be taken into account to further pursue the instability issue by using external forcing.

The Study of Aerodynamic Heating Characteristics for the Design of Nose Shapes of Space Launcher (발사체 선두부의 공력가열현상 특성연구)

  • Choi, Won;Kim, Kyu-Hong;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.14-20
    • /
    • 2002
  • The aerodynamic heating at a nose cone is predicted under the KSR-III flight conditions. An equilibrium reacting gas condition is applied. The parametric study is performed with Mach number of 4.9, 10.2 and 15 and for the following nose shapes of hemisphere, cut cylinder and parabola. AUSMPW+ and shock aligned grid technique are used to provide the best aerodynamic solutions. In addition, the composite material of a nose cone is discussed in the viewpoint of a thermal safety.