• Title/Summary/Keyword: 유동망 시스템

Search Result 75, Processing Time 0.026 seconds

Study on Flow Deflection of Duct and Raw Coal Separation Screen (덕트 및 원탄 선별망 유동 편향에 관한 연구)

  • Semyeong Lim;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.28-33
    • /
    • 2023
  • In this study, computational fluid dynamics was used to analyze the flow bias generated as air supplied by a fan passes through ducts, piping, and a coal separation screen. The flow bias of the air flow is mostly caused by the spatial characteristics of the fan volute and duct, and the internal baffle and the coal separation screen at the outlet cause strong pressure losses that dampen the flow bias. ANSYS CFX was used for computational fluid dynamics, and since the baffle and the coal separation screen are shaped like perforated plates with many small holes uniformly distributed, actual modeling for analysis was not possible. Therefore, the Porous Loss Model was applied. The evaluation of the flow bias was analyzed based on the velocity distribution of the Porous Loss Model at the outlet surface of the coal separation screen obtained from the computational fluid dynamics results.

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.19-26
    • /
    • 2008
  • From numerical point of view on flow network system analyses, stagnation properties are not preserved along streamlines across geometric discontinuities. Hence, GJM and DTM using ghost cell and thermodynamic relations are developed to preserve the stagnation enthalpy for the boundaries, such as the interfaces between junction and branches and the interface between two pipes of different cross-sections in serial pipelines. Additionally, the resolving power and efficiencies of the 2nd order Godunov type FV schemes are investigated and estimated by the tracing of the total mechanical energy during calculating rapid transients. Among the approximate Riemann solvers, RoeM is more suitable with the proposed boundary treatments especially for junction than Roe's FDS because of its conservativeness of stagnation enthalpy across geometric discontinuities.

  • PDF

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.19-26
    • /
    • 2008
  • From numerical point of view on flow network system analyses, stagnation properties are not preserved along streamlines across geometric discontinuities. Hence, GJM and DTM using ghost cell and thermodynamic relations are developed to preserve the stagnation enthalpy for the boundaries, such as the interfaces between junction and branches and the interface between two pipes of different cross-sections in serial pipelines. Additionally, the resolving power and efficiencies of the 2nd order Godunov type FV schemes are investigated and estimated by the tracing of the total mechanical energy during calculating rapid transients. Among the approximate Riemann solvers, RoeM is more suitable with the proposed boundary treatments especially for junction than Roe's FDS because of its conservativeness of stagnation enthalpy across geometric discontinuities.

  • PDF

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • To adequately analyze flows in pipe or duct network system, traditional node-based junction coupling methods require the junction loss which is specified by empirical or analytic correlations. In this paper, a new finite volume junction coupling method using a ghost junction cell is developed by considering the interchange of linear momentum as well as the important wall-effect at junction without requiring any correlation on the junction loss. Also, boundary treatment is modified to preserve the stagnation enthalpy across boundaries, such as pipe-end and the interface between junction and branch. Also, the computational accuracy and efficiency of the Godunov-type finite volume schemes are investigated by tracing the total mechanical energy of rapid transients due to sudden closure of valve at downstream end.

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

Ghost Junction Method for Flow Network System Analyses (유동망 시스템 해석을 위한 유령 정션 기법)

  • Hong, Seok-Woo;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.626-629
    • /
    • 2008
  • Numerical predictions on flow phenomena in pipe network systems have been considered as playing an important role in both designing and operating various facilities of piping or duct systems, such as water supply, tunnel or mine ventilation, hydraulic systems of automobile or aircraft, and etc. Traditionally, coupling conditions between junction and connected branches are assumed to satisfy conservation law of mass and to share an equal pressure at junction node. However, the conventional methodology cannot reflect momentum interactions between pipes sufficiently. Thus, a new finite volume junction treatment is proposed both to reflect the interchanges of linear momentums between neighbor branches at junction and to include the effect of wall at junction in present work.

  • PDF

A Pipeline Network Analysis on the Source and the Relation with Pipe Diameter of the Flow Hunting in a Orifice Meter (오리피스 유량계의 유동헌팅 원인과 배관경과의 상관관계에 대한 배관망해석 연구)

  • Shin, Chang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • Generally, the flow hunting is observed in almost all of the orifice meters but the intensity of the flow hunting is different at each metering system. In order to investigate the relations between pipe diameter and the flow instability or the flow hunting in a real metering system, a one-dimensional pipeline network model was built and analyzed for the examination of flow characteristics and relations to the flow hunting, changing diameters of the meter and the pipes before and after the meter. Finally, the effects of pressuredifference variation and flow hunting following to the variations of the diameters of the meter and the pipes before and after the meter were investigated and the relations were examined as well.

Preprocessing System for the Finite Element Tidal Simulation Model Using GIS and Automatic Mesh Generator (GIS 및 격자망 자동발생 프로그램을 이용한 해수유동 유한요소 모형의 전처리 시스템)

  • Kwun Soon-kuk;Koh Duck-koo
    • KCID journal
    • /
    • v.2 no.2
    • /
    • pp.10-19
    • /
    • 1995
  • In spite of their high availability in the field of water resources, finite element models generally require large amount of input data in which the preparation of them consists of complicated procedures and time consuming works. In addition, in case of a

  • PDF

The Moving Object Detection Of Dynamic Targets On The Image Sequence (영상열에서의 유동적 형태의 이동물체 판별에 관한 연구)

  • 이호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.41-47
    • /
    • 2001
  • In this paper, I propose a detection algorithm that can reliably separate moving objects from noisy background in the image sequence received from a camera at the fixed position. The proposed algorithm consists of four processes: generation of the difference image between the input image and the reference image. multilevel quantization of the difference image, and multistage merging in the quantized image, detection of the moving object using a back propagation in a neural network. The test results show that the proposed algorithm can detect moving objects very effectively in noisy environment.

The Study of Visualization for Moving Particles in the Water Using Artificial Neural Network (인공신경망을 이용한 수중 충돌입자의 가시화 연구)

  • Shin Bok-Suk;Je Sung-Kwan;Jin ChunLin;Kim Kwang-baek;Cho Jae-Hyun;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1732-1739
    • /
    • 2004
  • In this paper, we proposed a visualization system with ANN algorithm that traits the motion of particles that move colliding in the water, where we got a great deal of variable information and predicts the distribution of particles according to the flowing of water and the pattern of their precipitation. We adopted ART2 to detect sensitively the collision between particles in this visualzation. Various particles and their mutual collision influencing the force such as buoyancy force, gravitational force, and the pattern of precipitation are considered in this system. Flowing particles whose motion is changed with the environment can be visualized in the system presented here as they are in real water.