DOI QR코드

DOI QR Code

Study on Flow Deflection of Duct and Raw Coal Separation Screen

덕트 및 원탄 선별망 유동 편향에 관한 연구

  • Semyeong Lim (Kunsan National University Advanced Technology Institute for Convergence) ;
  • Hyunbum Park (School of Mechanical Engineering, Kunsan National University)
  • 임세명 (군산대학교 고등기술융합연구원) ;
  • 박현범 (군산대학교 기계공학부)
  • Received : 2023.04.25
  • Accepted : 2023.07.20
  • Published : 2023.08.31

Abstract

In this study, computational fluid dynamics was used to analyze the flow bias generated as air supplied by a fan passes through ducts, piping, and a coal separation screen. The flow bias of the air flow is mostly caused by the spatial characteristics of the fan volute and duct, and the internal baffle and the coal separation screen at the outlet cause strong pressure losses that dampen the flow bias. ANSYS CFX was used for computational fluid dynamics, and since the baffle and the coal separation screen are shaped like perforated plates with many small holes uniformly distributed, actual modeling for analysis was not possible. Therefore, the Porous Loss Model was applied. The evaluation of the flow bias was analyzed based on the velocity distribution of the Porous Loss Model at the outlet surface of the coal separation screen obtained from the computational fluid dynamics results.

본 연구에서는 전산유동해석을 통해 송풍기에서 공급되는 공기가 덕트 배관과 원탄 선별망을 통과하며 발생하는 유동 편향을 분석하였다. 공기 유동의 유동 편향은 송풍기 볼류트 형상과 유로의 형상 특성으로부터 대부분 발생하며, 유로 내부의 정류망이나 출구의 원탄 선별망은 강력한 압력 손실을 발생시켜 유동 편향을 감쇠하는 효과를 초래한다. 전산유동해석은 ANSYS CFX 2022 R2를 사용하였으며, 정류망과 원탄 선별망은 작은 구멍 다수가 일정하게 분포되어있는 타공판 형상이기 때문에 실제 모델링을 통한 해석은 불가능하다. 따라서 Porous Loss Model을 적용하였다. 유동 편향의 평가는 전산유동해석 결과의 원탄 선별망 Porous Loss Model의 출구 면에 대한 속도 분포를 대상으로 분석하였다.

Keywords

Acknowledgement

본 연구는 2023년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받아 수행된 연구임.(2023R1A6C101B042)

References

  1. Korean Energy Economics Institute, "2021 Yearbook of Energy Statistics," 2022
  2. Byung Doo Kwon, Sik Heo, "Variation of the Physical Properties of Coal depending upon the Quality," Journal of Korean Institute of Mining Geology, vol. 21, no. 1, pp. 97~106, 1988.
  3. I. S. Kim, J. H. Nam, C. J. Kim, "On Numerical Treatment of Pressure Gradient at the Interface Between a Homogeneous Fluid and a Porous Medium", Journal of Computational Fluids Engineering, Vol.4 No.3 pp.28-34 Dec. 1999.
  4. Il-Sun Jung, Jae-Hyun Park, Jae-Hwan Bae Sangmo Kang, "Porous modeling for the prediction of pressure drop through a perforated strainer", Journal of the Korean Society of Marine Engineering, vol. 37, no. 4, pp. 358~367, 2013. https://doi.org/10.5916/jkosme.2013.37.4.358
  5. Taek Keun Kim, Sung Hoon Song, "Prediction of Thermal Performance for Compact Heat Exchangers Using Thermal Porous Medium Approach", Transactions of KSAE, Vol.29 No.2 pp.119-125 Feb. 2021. https://doi.org/10.7467/KSAE.2021.29.2.119
  6. Yo Han Choi, Il Hoon Yoo, Chul-Hee Lee, "Thermal Flow Analysis of an Engine Room using a Porous Media Model for Imitating Flow Rate Reduction at Outlet of Industrial Machines", Journal of Drive and Control, Vol.19 No.1 pp.62-68 Mar. 2022.
  7. "Ansys CFX-Solver Theory Guide", Ansys, Inc, 2022
  8. Bruce R. Munson, Ted H. Okiishi, Wade W. Huebsch, Alric P. Rothmayer, Fluid Mechanics, John Wiley & Sons, 2013.
  9. Frank M. White, Fluid Mechanics, McGraw-Hill, 2013.