• Title/Summary/Keyword: 유도 어뢰

Search Result 18, Processing Time 0.022 seconds

Analysis of Detecting Effectiveness of a Homing Torpedo using Combined Discrete Event & Discrete Time Simulation Model Architecture (이산 사건/이산 시간 혼합형 시뮬레이션 모델 구조를 사용한 유도 어뢰의 탐지 효과도 분석)

  • Ha, Sol;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2010
  • Since a homing torpedo system consists of various subsystems, organic interactions of which dictate the performance of the torpedo system, it is necessary to estimate the effects of individual subsystems in order to obtain an optimized design of the overall system. This paper attempts to gain some insight into the detection mechanism of a torpedo run, and analyze the relative importance of various parameters of a torpedo system. A database for the analysis was generated using a simulation model based on the combined discrete event and discrete time architecture. Multiple search schemes, including the snake-search method, were applied to the torpedo model, and some parameters of the torpedo were found to be stochastic. We then analyzed the effectiveness of torpedo’s detection capability according to the torpedo speed, the target speed, and the maximum detection range.

어뢰 방어체계 현황 및 추세 (1)

  • Seong, Il
    • Defense and Technology
    • /
    • no.12 s.178
    • /
    • pp.28-37
    • /
    • 1993
  • 적의 어뢰공격을 받을 때 기만기로 방어하는 것은 대단히 유효한 수단이며, 최신 기만시스템은 어뢰의 유도장치에 대응하는 여러가지 기능을 구비하여 함정과 유사한 신호를 발생시켜 어뢰를 함정으로부터 다른 방향으로 유도해서 추적을 차단시킵니다.

  • PDF

Engagement Level Simulator Development for Wire-Guided Torpedo Performance Analysis (선유도어뢰 전술 효과도 분석을 위한 교전수준 모델 개발 연구)

  • Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This paper introduces the simulation concepts and technical approach of wire-guided torpedo performance analysis simulator, as a consequence, provide a framework for understanding overall attack procedures and effectiveness of tactics to torpedo operator. It described the mathematical models of simulation components and weapon engagement principle, especially it derived the closed-form solution of time consumption and leading angle problem of torpedo attack situation based on geographical assumption. In addition, it adopted the proportional navigation guidance at final stage of torpedo attack and also consider the tradeoff relation between target ship speed(propeller noise level) and detection probability, so that it improves the fidelity of physical realism. Simulator is developed with high degree of freedom in the perspective of tactical situation, and it helps user to understand the overall situation and tactical effectiveness.

On the Development of Authoritative Representations of Torpedo Systems for Engagement Level Simulation (교전수준 어뢰체계 표준모델 개발 방안 연구)

  • Shin, Ji-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.19-28
    • /
    • 2007
  • We considered the authoritative representations of torpedo systems that was the engagement level model to develop system specifications and to analyze operational requirements on concept design phase. The Work Breakdown Structure(WBS) of models was defined about authoritative representations of the torpedo systems. The communication of information among each subsystems and input/output parameters were defined. In the heavy weight and light weight torpedo model, presetter, underwater maneuver, war head, sonar, guidance and control, propulsion subsystem modeling were developed for heavy-weight and the light-weight torpedo systems. The authoritative representations of torpedo systems have similar structures with those of the engineering level models and could be verified via engagement level simulations according to the V&V process in the future.

  • PDF

A Study on Improvement of Storage Safety through Quality improvement of Torpedo Propulsion Battery (어뢰 추진전지 품질개선을 통한 저장안정성 향상에 관한 연구)

  • Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.291-298
    • /
    • 2019
  • We describe the improvement of insulation performance and the prevention of electrolyte leakage in a single cell in order to prevent the fuming phenomenon caused by leakage of electrolyte in a lithium secondary battery in a submerged weapon (torpedo) operated in Korea. A torpedo using lithium secondary battery as a main power source (propulsion battery) can induce the heat and fuming phenomenon, which makes it inconvenient for naval equipment operation in Korea. In the simulation test, the electrolyte of some battery cells leaked in the battery pack unit, leading to a short circuit between the main power circuit and the terminal tab of the high voltage part. We analyzed the characteristics and mechanism of the lithium secondary battery during this heat generation and fuming phenomenon. In order to prevent leakage of the electrolyte in the lithium secondary battery, the design was improved via fundamental (terminal tap enhancement) and complementary (insulation block selection and installation) measures. Comparison of the performance test before and after the improvement showed that the tensile strength of the tap terminal was improved about 2 times and the withstand voltage characteristic was improved. The application of quality improvement measures resulted in no fuming even after more than 3 years of field operation. This result is expected to improve the operation and storage stability of the torpedo propulsion cell.

Establishment of suspension culture condition for embryogenic callus proliferation and somatic embryo development of Kalopanax septemlobus (음나무 배발생 캘러스의 증식 및 체세포배 발달을 위한 액체 현탁 배양조건 확립)

  • Kim, Sun-Ja;Moon, Heung-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • This study was conducted to establish the optimal suspension culture system for both the propagation of embryogenic cells (ECs) and the induction of somatic embryos (SEs) of Kalopanax septemlobus. The proliferation rate of ECs was reduced as the inoculum density was increased; the highest rate was obtained when 0.1 g/100 ml of cells was initially inoculated. According to the analysis of cell growth pattern and cell growth cycle (G1, Sand G2/M), the cell growth started in 5 days culture initiation, grew rapidly until 15 days and then decreased gradually. Distinctive changes of the cell growth cycle by the culture periods was also observed; the growth cycle was doubled from initial 5.6% to 11.7% of S stage in 5 days culture and then reached in stable stages again. Therefore, the results indicated that a 15-day-cycle was the optimal culture period for the propagation of the ECs through the suspension culture. Furthermore, the cell inoculum density was also important for the induction of SE; more than 65% of SEs at the torpedo stage was induced by using the low level of cell inoculum (0.5 g/L), while the higher inoculum densities were rapidly reduced the proportion of SEs at that stage. Although the higher inoculum density delayed the development of SE, it did not affect the proportion of SEs at the globular and heart stage. In conclusion, this study showed that the suspension culture of the Kalopanax septemlobus ECs through the control of inoculum density was an efficient way for both the propagation of ECs and the induction of SEs, suggesting that the development of this system might help to reduce the culture period for the somatic embryo production.

A study on Convergence Weapon Systems of Self propelled Mobile Mines and Supercavitating Rocket Torpedoes (자항 기뢰와 초공동 어뢰의 융복합 무기체계 연구)

  • Lee, Eunsu;Shin, Jin
    • Maritime Security
    • /
    • v.7 no.1
    • /
    • pp.31-60
    • /
    • 2023
  • This study proposes a new convergence weapon system that combines the covert placement and detection abilities of a self-propelled mobile mine with the rapid tracking and attack abilities of supercavitating rocket torpedoes. This innovative system has been designed to counter North Korea's new underwater weapon, 'Haeil'. The concept behind this convergence weapon system is to maximize the strengths and minimize the weaknesses of each weapon type. Self-propelled mobile mines, typically placed discreetly on the seabed or in the water, are designed to explode when a vessel or submarine passes near them. They are generally used to defend or control specific areas, like traditional sea mines, and can effectively limit enemy movement and guide them in a desired direction. The advantage that self-propelled mines have over traditional sea mines is their ability to move independently, ensuring the survivability of the platform responsible for placing the sea mines. This allows the mines to be discreetly placed even deeper into enemy lines, significantly reducing the time and cost of mine placement while ensuring the safety of the deployed platforms. However, to cause substantial damage to a target, the mine needs to detonate when the target is very close - typically within a few yards. This makes the timing of the explosion crucial. On the other hand, supercavitating rocket torpedoes are capable of traveling at groundbreaking speeds, many times faster than conventional torpedoes. This rapid movement leaves little room for the target to evade, a significant advantage. However, this comes with notable drawbacks - short range, high noise levels, and guidance issues. The high noise levels and short range is a serious disadvantage that can expose the platform that launched the torpedo. This research proposes the use of a convergence weapon system that leverages the strengths of both weapons while compensating for their weaknesses. This strategy can overcome the limitations of traditional underwater kill-chains, offering swift and precise responses. By adapting the weapon acquisition criteria from the Defense force development Service Order, the effectiveness of the proposed system was independently analyzed and proven in terms of underwater defense sustainability, survivability, and cost-efficiency. Furthermore, the utility of this system was demonstrated through simulated scenarios, revealing its potential to play a critical role in future underwater kill-chain scenarios. However, realizing this system presents significant technical challenges and requires further research.

  • PDF

Effects of Cytokinins on Secondary Embryogenesis and Plant Regeneration from Somatic Embryos of Aralia cordata Thunb. (땅두릅의 체세포배로부터 2차배 발생과 식물체 재생에 미치는 싸이토카이닌의 영향)

  • 이종천;소웅영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.149-154
    • /
    • 2000
  • Embryogenic suspension cultures were initiated using embryogenic callus from immature inflorescence explants (Aralia cordata Thunb.) cultured on solid MS medium containing 1 mg/L 2,4-D for 8 weeks and then the embryogenic callus was proliferated in liquid MS medium containing 1 mg/L 2,4-D. After sieving the suspensions (pore size 270$\mu$m), embryogenic cells were cultured in liquid MS medium with cytokinins (kinetin, BA, zeatin) for two weeks. When the embryogenic cells were transferred to liquid MS basal medium, primary somatic embryos were developed after 5 weeks of culture. Secondary embryos were developed directly from the primary torpedo and cotyledonary embryos cultured in solid MS basal medium. Frequency of secondary embryogenesis was higher on medium containing 2 mg/L kinetin than the other cytokinins. Plant regeneration was highly recorded by placing secondary cotyledonary embryos induced from primary cotyledonary embryos in MS medium containing 2 mg/L kinetin or 2 mg/L zeatin (25.4% and 28.6%, respectively). The plant regeneration from secordary embryos was prohibited by tertiary embryogenesis.

  • PDF

Plant Regeneration Through Organogenesis and Somatic Embryogenesis of Cucumber (Cucumis sativus L.) (오이(Cucumis sativus L.) 기관분화 및 체세포배 발생을 통한 식물체 재분화)

  • 김재훈;오승용;이행순;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.125-129
    • /
    • 1998
  • Cucumber (Cucumis sativus L.) plants were regenerated through organogenesis and somatic embryogenesis in cotyledon and hypocotyl cultures. The shoots were efficiently formed on the basal region of cotyledons cultured on MS medium containing 1.0㎎/L zeatin and 0.1㎎/L IAA in all cultivars used. Embryogenic calli were formed on hypocotyl segments cultured on MS medium containing 1.0㎎/L 2,4-D in cv. group 'Nakhab' and maintained by consecutive subculture on the same medium every 2-3 weeks without loss of embryogenic ability. Upon transfer to MS basal medium, high frequency somatic embryogenesis was achieved easily from embryogenic callus. Regenerated plantlets through organogenesis and somatic embryogenesis were transplanted to pots and gradually acclimatized to greenhouse condition where they subsequently produced fruits.

  • PDF

Data Fusion and Pursuit-Evasion Simulations for Position Evaluation of Tactical Objects (전술객체 위치 모의를 위한 데이터 융합 및 추적 회피 시뮬레이션)

  • Jin, Seung-Ri;Kim, Seok-Kwon;Son, Jae-Won;Park, Dong-Jo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2010
  • The aim of the study on the tactical object representation techniques in synthetic environment is on acquiring fundamental techniques for detection and tracking of tactical objects, and evaluating the strategic situation in the virtual ground. In order to acquire these techniques, there need the tactical objects' position tracking and evaluation, and an inter-sharing technique between tactical models. In this paper, we study the algorithms on the sensor data fusion and coordinate conversion, proportional navigation guidance(PNG), and pursuit-evasion technique for engineering and higher level models. Additionally, we simulate the position evaluation of tractical objects using the pursuit and evasion maneuvers between a submarine and a torpedo.