• Title/Summary/Keyword: 유기 혼화제

Search Result 14, Processing Time 0.017 seconds

Effects of Soluble Alkalis on the Rheological Properties of Belite-rich Cement with Polycarbonate Superplasticizer (폴리카르복실산계 유기 혼화제를 첨가한 Belite-rich Cement의 유동특성에 미치는 가용성 알칼리의 영향)

  • 황인수;정재현;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.152-157
    • /
    • 2001
  • 본 연구에서는 고유동, 저발열 및 고강도 특성을 발현하는 belite-rich cement(BRC)에 있어서 카르복실산계 유기혼화제를 사용했을 때 가용성 알칼리의 함량 변화에 따른 흡착거동과 유동특성에 미치는 영향성에 대해 검토하였다. BRC에서 알칼리 0.1~0.2 wt% 및 알칼리 설페이트 0.3~0.5 wt% 첨가시 슬럼프가 증가하거나 손실이 거의 없었으며, 그 이상의 함량을 첨가하였을 때 다시 유동서 저하를 가져왔다. 그러나, 보통 포틀랜드 시멘트(OPC)의 슬럼프 유지능력은 알칼리 및 알칼리 설페이트를 첨가할수록 감소되었다.

  • PDF

Synthesis and Application of Melamine-Type Superplasticizer at the Different Synthetic Conditions (멜라민계 고유동화제의 다양한 조건에서의 합성 및 응용)

  • Yoon Sung-Won;Shin Kyoung-Ho;Rho Jae-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.811-818
    • /
    • 2005
  • It is well known that the fluidity and the fluidity loss of fresh concrete are affected by the kind of organic admixtures. Organic admixture can improve the properties of concrete. Sulfonated Naphthalene-Formaldehyde(SNF) Superplasticizer is used representatively, but has a problem in fluidity loss. In this study, we synthesized the Sulfonated Melamine-Formaldehyde(SMF) superplasticizer at the various synthetic conditions and compared the physical properties with SMF superplasticizer. SW superplasticizer is synthesized with four synthetic steps. Step 1 is hydroxymethylation, Step. 2 is Sulfonation, Step. 3 is Polymerization and Step. 4 is Stabilization. Synthesis of SMF superplasticizer depends on pH, temperature and reaction time. In this reaction, we changed the mole ratio of melamine to formaldehyde at 1:3, 1:4, and the amount of acid catalyst at Step. 3. After application of SMF superplasticizer and its mixture with SNF superplasticizer to cement pastes and mortars, we measured the physical properties of them at the different dosages(0.5, 1.0, 1.5 wt%) to cement. All samples including superplasticizer showed higher compressive strengths and slump, smaller pore size and porosity than CEM

Rheology Properties of Belite-rich Cement Mortar Added Blastfurnace Slag and Polycarbonate-based Superplasticizer (고로슬래그와 폴리카르본산계 유기 혼화제를 첨가한 Belite-rich Cement 모르타르 유동특성)

  • 송종택;송종택;조현태;황인수;박춘근
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.145-151
    • /
    • 2000
  • In order to investigate the rheological properties of belite-rich cement(BRC) added polycarbonate-based superplasticizer and blastfurnace slags which have different blaines at 4500, 6000 and 8000$\textrm{cm}^2$/g, the change of minislumps and mortar slumps are measured with time. The rheological properties improve as specific surface area of added slag decreases or amount of polycarbonate-based superplasticizer increases. The slump loss can be controlled effectively by the steric hinderance effect of polycarbonate-based superplasticizer. According to the results, when mix proportion of the mortar is 1.5% mass content of superplasticizer and 30% mass addition of blastfurnace slag which blaine is 4500$\textrm{cm}^2$/g, the best mortar slump can be achieved without any significant segregation of materials.

  • PDF

Effects of inorganic fluosilicate agent on the properties of concrete (규불화염계 혼화제가 콘크리트의 물성에 미치는 영향)

  • Lee, Sang-Ho;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.187-194
    • /
    • 2005
  • This paper deals with a waterproof and mechanical feature of concrete using an inorganic self waterproof agent. The waterproof agents having been used in our country were a membrane agent, penetration agent and an organic waterproof agent. However, these agents have a lot of problems such as losing the effect of waterproof in the environment of lots of water, the difficulty of dispersion. For the clear of problems of these water -proof agents, we used the inorganic waterproof agent. This agent was made from inorganic fluosilicate. Generally, a waterproof agent has been used only for the waterproof effect. In this paper, however through the some tests of concrete using the inorganic self waterproof agent, we recognized that the concrete using the agent is more excellent in some peculiar properties than general concrete's properties. In this paper, we performed compressive strength, permeability, pore volume test, etc. As a result, the concrete of using the agent is more excellent in economy, waterproof, compressive strength.

A Study on the Improvement of Flame Retardancy of Polylactide for Construction Materials (건축자재용 폴리락타이드의 난연성 향상에 관한 연구)

  • Cha, Sang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.113-119
    • /
    • 2021
  • Polymers are widely applied to construction materials due to their lightweight and excellent mechanical properties. However, owing to the combustible properties, polymers are one of the biggest reason of spreading large fires in fire accidents that occur frequently in the construction industry. Therefore, as a solution to this problem, many research has been conducted to impart flame retardancy by incorporating flame retardants to polymer matrix. Among these flame retardants, organic phosphorus-containing flame retardants have been attracting much attention because they have excellent compatibility with polymer matrix and low toxicity compared with halogen or inorganic-containing flame retardants. Accordingly, this study aims to design and synthesize an alkoxyamine-based organic phosphorus flame retardant to improve flame retardancy of polylactide which is an eco-friendly polymer used for construction materials.

Dispersion of Organic Phase by Agitation in a n-Hexane/p-TSA Aqueous Solution System (n-헥산/p-TSA 수용액계에서 교반에 의한 유기상의 분산)

  • Kim, Tae-Ok;Chun, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.209-215
    • /
    • 1991
  • The effect of agitation on the dispersion of organic phase was investigated in an immiscible liquid system (n-hexane/40 wt % p-TSA aqueous solution). Four different types of six-bladed turbine impellers were used : a flat blade type and three screen blade types. The experimental results showed that the extent of dispersion of organic phase at the same agitation speed was decreased in the order of flat blade, 60 mesh, 40 mesh, and 20 mesh screen blades. Otherwise, it was increased with increasing the concentration of TBA as a surfactant agent and with decreasing volume fraction of organic phase. Also, the minimum agitation speed for a complete dispersion was increased in the order of flat blade, 60 mesh, 40 mesh, and 20 mesh screen blades. However, the minimum power consumption did not vary significantly. In this condition, the relationship between Power number and Reynolds number was expressed as $N_p=a\;N_{Re}{^b}$, where the values of constant a and constant b were ranged 2200~4100 and -0.69~-0.63 respectively.

  • PDF

An Experimental Study on the Self-Consolidating Concrete with EP Nylon Fiber (EP 나일론섬유를 혼입한 자기충전콘크리트(SCC)에 관한 실험적 연구)

  • Ryou, Jae Suk;Lee, Yong Soo;Jeon, Joong Kyu;Jeon, Chan Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.159-168
    • /
    • 2011
  • In this study, we find out the feasibility of self-consolidating concrete with EP nylon fiber. Three kinds of method were used; when length of nylon fiber is differed for the experiment to investigate usability of nylon fiber with enhanced performance by dispersing-agent coating in self-consolidating concrete, when mixing in other organic fibers (polypropylene, cellulose) and in case of Binary Blended and Ternary Blended concrete mixed with different types of mineral admixtures (blast-furnace slag and fly ash). Based on the results of the experiment described above, comparison was made on the basic properties and dynamic characteristics of general fiber reinforced concrete mixed with enhanced performance nylon fiber and SCC mixed with enhanced performance nylon fiber as a Mock-up test prior to the experiment of application to the actual structure. Considering characteristics and durability of the fresh and hardened self-compacting concrete, dynamic characteristics and durability were found to be more outstanding when using nylon fiber for the mineral admixtures used, dynamic characteristics and durability were found to be more outstanding when using blast-furnace slag.

On-line Monitoring of the Flocs in Mixing Zone using iPDA in the Drinking Water Treatment Plant (정수장 응집혼화공정에서의 응집플럭 연속 모니터링)

  • Ga, Gil-Hyun;Jang, Hyun-Sung;Kim, Young-Beom;Kwak, Jong-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.263-271
    • /
    • 2009
  • This study evaluated the flocs forming characteristics in the mixing zone to increase the coagulation effect in the drinking water plant. As a measuring tool of formed flocs, on-line particle dispersion analyzer (iPDA) was used in Y drinking water plant. To evaluate the forming flocs, many parameters such as poly amine, coagulant dosing amount, raw water turbidity, and pH was applied in this study. During the periods of field test, poly aluminium chloride (PACl) as a coagulant was used. With the increase of the raw water turbidities, poly amine was also added as one of aids for increasing in coagulation efficiency. The turbidity and pH of raw water was ranged from 7 to 9 and from 25 to 140 NTU, respectively. The increasing of raw water turbidity brought the bigger floc sizes accordingly. From a regression analysis, $R^2$ value was 0.8040 as a function of T, raw water turbidity. Floc size index (FSI) was obtained from a correlation equation as follows; FSI = 0.9388logT - 0.3214 Also, polyamine gave the bigger flocs the moment it is added to the coagulated water in the rapid mixing zone. One of parameters influencing the floc sizes was the addition of powdered active carbon(PAC) in the mixing zone. In case of higher turbidity of raw water, $R^2$ value was 0.9050 in the parameters of [PACl] and [PAC]; FSI = $0.0407[T]^{0.324}[PACI]^{0.769}[PAC]^{0.178}$ On-line floc monitor was beneficial to evaluate the flocs sizes depending on the many parameters consisting raw water properties, bring the profitable basic data to control the mixing zone more effectively.

A Study on the Function of Organic Admixture in Fly Ash Substituting Fresh Concrete (플라이애쉬를 혼합(混合)한 굳지않은 콘크리트에 있어서 유기혼화제(有機混和劑)의 기능(機能)에 관한 연구(研究))

  • Moon, Han Young;Sea, Joung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • From the test results of the adsorption characteristics of AE admixture, it was shown that the adsorption of AE admixture on fly ash was mearly completed in 30 minutes and the higher was ignition loss, the larger the quantity of saturation adsorption. Because most of the ignition loss of the fly ash was due to the unburned carbon, it could be said that the unburned carbon is the main reason of reduction of air content in AE concrete. On the other hand, in the case of superplasticizer, the amount of saturation adsorption in fly ash was lower than in cement and the same result was obtained in the dispersive effect. But, when using superplasticizer in fly ash substituting concrete, the fludity in the concrete was not decreased.

  • PDF