• Title/Summary/Keyword: 유기물 분해

Search Result 1,114, Processing Time 0.041 seconds

Effect of Crop Yield and Soil Physical Properties to Application of Organic Resources in Upland (밭 토양에서 유기물 자원의 시용이 작물 수량 및 토양 물리성에 미치는 영향)

  • Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Zhang, Yongseon;Kim, Gisun;Seo, Youngho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.15-22
    • /
    • 2017
  • Application of organic resources to agricultural land can increase crop yield by improving soil characteristics. The objective of this study was to evaluate effect of crop yield and soil physical properties including aggregate stability to application of organic resources in upland. The soybean was cultivated in a sandy loam field and a clay loam field located at Suwon and a sandy loam field located at Pyeongchang. The organic resources used in this study were rice straw compost (RSC), composted pig manure with sawdust (CPIG), composted poultry manure with sawdust (CPM), and cocopeat applied before sowing crop. Application rate of organic resources was determined based on carbon content and water content. The inorganic fertilizers were applied based on soil testing. In addition, the decomposition of RSC, CPIG, and cocopeat was characterized by isothermal incubation with sandy loam soil. The decomposition rate was highest for RSC followed by CPIG and cocopeat. Organic resource application increased yield of soybean, which effect was greater in clay loam than in sandy loam. In addition, increase in gas phase proportion by organic resource application was distinct in clay loam soil compared with sandy loam soil. In terms of aggregate stability, increasing effect was more obvious in sandy loam soils than in a clay loam soil. The highest yield was observed in RSC treatment plots for all the fields. Improvement of soybean yield and soil physical characteristics by cocopeat was not as much as that of the other organic resources. The results implied that RSC could be recommended for promoting aggregate stability and crop yield in upland cultivation.

Fabrication and Characterization of Zirconia-Alumina Composites by Organic-Inorganic Solution Technique (유기물-무기물 용액법을 이용한 지르코니아-알루미나 복합체의 제조 및 특성)

  • Kim, Youn Cheol;Bang, Moon-Soo;Lee, Sang Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.628-634
    • /
    • 2005
  • Zirconia-alumina polymer precursor was prepared from zirconium acetylacetonate (ZA). paluminium nitrate (AN), polyethylene glycol (PEG), and ethyl alcohol via an organic-inorganic solution technique. The thermal properties and viscosity of the polymer precursor were measured by differential scanning calorimetry (DSC), thermograbimetric analyzer (TGA), and dynamic viscometer. The vigorous exothermic reaction with volume expansion occurred at $140^{\circ}C$. The volume expansion was caused by abrupt decomposition of the organic group in metal compounds and the metal ions-PEG reaction. The evidences for these reactions were confirmed by FT-IR and $^{13}C$ solid NMR results. The peak intensity at N-O, O-H and C=C decreased with increasing temperature. This indicated that the decomposition of metal compounds and the metal ions-PEG reaction occurred during the vigorous exothermic reaction. At $800^{\circ}C$ for 2 h, the porous powders transformed to the crystalline $ZrO_2-Al_2O_3$ composites.

Changes in Soil Biota Affected by the Application of Organic Materials in Reclaimed Upland and Paddy-converted Soils Cultivated with Korea Ginseng (개간 및 답전윤환 인삼재배지에서 유기물처리에 따른 토양생물상 변화)

  • Eo, Jin-U;Park, Kee-Choon;Yeon, Byung-Ryul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.872-877
    • /
    • 2011
  • Cultivation of Korea ginseng in newly reclaimed and paddy-converted fields has been increasing, and evaluation of organic amendment effectiveness is needed in the two soil types. Soil organisms influence organic matter decomposition, and their responses to applications of organic matter were studied. De-oiled cake and compost were applied at $20Mg\;ha^{-1}$ and $40Mg\;ha^{-1}$ in both soil types. Changes in microflora were assessed by analyzing phospholipid fatty acid (PLFA). The abundance of nematodes and microarthropods was measured. Microbial PLFA indicators for microorganisms and microarthropod abundance were greater in reclaimed upland than in paddy-converted soil. There were few differences in the microflora and fauna of reclaimed uplands, regardless of treatment. In paddy-converted soil, the abundance of Oribatida was increased by the application of compost at $20Mg\;ha^{-1}$ and was correlated with PLFA indicators of fungi. The results suggested a minimal influence of organic amendments in reclaimed upland, because the organic matter content and abundance of soil organisms are low in mineral soils. In paddy-converted soil, the effects of organic amendment differ among different soil organisms, and soil properties are important mediators of the effect.

Respirometry for the Assessment of Organics Biodegradability in Municipal Wastewater: I. Respirometry (호흡률법에 의한 하수의 생분해 특성 평가: I. 호흡률법)

  • Kim, Dong Han;Kim, Hee Jun;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Organics may be divided into biodegradable and nonbiodegradable fractions on the basis of biodegradability. Biodegradable organics may be subdivided into readily and slowly biodegradable fractions. As this biodegradability of organics in municipal wastewater has a great influence on the efficiency of a biological nutrient removal process, it has been assessed by respirometry. The respirometer, which consisted of a respiration chamber and a respiration cell, was used to measure the respiration rate of biomass utilizing the readily biodegradable organics. The readily biodegradable organics are about 10% of the COD in municipal wastewater. The adequate ratio of wastewater to sludge volume and the concentration of sludge are required in measuring the respiration rate due to the readily biodegradable organics. By using a biochemical oxygen demand test, the slowly biodegradable organics including biomass are estimated about 66% of COD. The soluble inert organics are about 11% of COD. On the basis of mass balance, the particulate inert organics are estimated about 13% of COD.

Changes in Physical Properties and Wood Chemical Components of sawdust medium during Oak Mushroom (Lentinula edodes) Cultivation (표고 재배 중 톱밥 배지의 물리적 성질과 목재 화학성분 변화)

  • Jong-Shin Lee;Seog-Goo Kang;Seung-Min Yang;Jin-Kyoung Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.291-300
    • /
    • 2022
  • In this study, the physical properties of the medium and changes in the wood chemical composition of the sawdust were investigated during the cultivation of oak mushroom sawdust bags, and the following results were obtained. After inoculation, the weight of the medium decreased during the incubation period. It is determined that this is not due to evaporation of moisture containing the medium or decomposition of sawdust, but to decomposition of rice bran, a low molecular substance added to the medium. It was confirmed that the moisture content of the medium was steadily increased during incubation, and it was estimated that the organic substrates such as rice brane in the medium was decomposed by mycelium, and water, one of the decomposition products of organic substrates, caused an increase in the moisture content of the medium. Along with the increase in the harvest of oak mushrooms, the proportion of organic substances such as holocellulose and lignin, the main components of the wood cell wall of sawdust, steadily decreased. In particular, the degradation characteristics of the wood cell wall component of shiitake, which is a white rot fungi, were confirmed by higher lignin reduction rate than that of holocellulose. On the other hand, ash, which is an inorganic material, increased with an increase in the number of mushroom harvests. The increase in the amount of ash in the medium may have been due to the decrease in the organic matter content such as holocellulose and lignin.

Pbotocatalysis decomposition of TCE in water phase with recirculation photoreactor (Recirculation 광촉매 화학 반응기를 이용한 액상 TCE 분해)

  • 이태규;김동형;조덕기;조서현;오정무
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.33-41
    • /
    • 1993
  • The objectives of this experiment performed were to determine the potential using of solar radiation to destroy organic contaminants in water by photolysis and to develop the process and improve its performance. We used lab, scale of recirculation photoreactor with 30, 50, 80ppm initial concentration of TCE and Ti $O_2$ anatase, respectively. Adsorption constant, reaction constant were obtained and compared using the Langmuir-Hinshelwood kinetics equation. Ti $O_2$ anatase demonstrated the highest conversion ratio co TCE among Ti $O_2$ anatase, ZnO and F $e_2$ $O_3$ in this experiment. It was shown that in case of two component system, TCE+ phenol, as the concentration of phenol increased in the feed solution, TCE decomposition rate decreased.

  • PDF

Effects on soil microbial composition and diversity of the long-term application of organic materials in upland soil (유기물 장기연용에 의한 밭토양 미생물의 변화)

  • An, Nan-Hee;Suh, Jang-Sun;Yoo, Jae-Hong;Lee, Min-Sang
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.302-302
    • /
    • 2009
  • 유기농업에서 유기물은 양분의 공급, 토양의 이화학성 개선, 토양의 생물학적 건전성 유지 등 중요한 역할을 한다. 토양의 생물학적 건전성은 토양의 생태계적 기능을 지속적으로 유지시키는 토양미생물이 관여하고 있다. 따라서 본 연구는 유기물의 장기연용에 따른 밭토양 미생물의 다양성을 비교 분석하였다. 여러 가지 유기자원을 동일한 기준으로 매년 동일 장소에 처리하였다. 사용된 유기자원은 가축분퇴비, 채종유박인 유기질비료, 볏짚으로만 퇴비화한 볏짚퇴비와 겨울철 휴한기에 헤어리베치를 재배하여 이듬해 봄에 예취한 후 토양에 환원한 녹비처리구, NPK구, 가축분퇴비를 혼용처리한 NPK퇴비군, 양분을 전혀 시용하지 않은 무비구 등 총 7처리구였다. 각각의 처리구에서 토양(0-20 cm)을 채취하여 배양성 토양미생물은 희석평판법으로 해당 선백배지에 시료를 도말 하여 조사하였고 비배양성 미생물은 토양으로부터 genomic DNA를 추출하여 세균의 16S rDNA를 증폭시킨 후 denaturing gradient gel electrophoresis (DGGE)를 수행하여 분석하였다. 주요결과를 요약하면 밭토양에 서식하는 토양미생물의 균수는 처리별간의 차이를 보였으며 유기물처리구가 화학비료처리구보다 높았다. DGGE 분석을 통해 유기물 처리에 따른 군집의 다양성을 살펴본 결과 Fig. 1에서 보는바와 같이 Gel 상에서 다양한 위치의 밴드를 확인할 수 있었고 처리별로 특이 밴드가 있음을 확인할 수 있었다. Fig. 1에서 얻은 DGGE profile상의 밴드 강도와 수를 비교하여 Fig 2와 같은 dendrogram을 나타낼 수 있었다.

  • PDF

Effect of the Pretreatment by Thermal Hydrolysis on Biochemical Methane Potential of Piggery Sludge (열가수분해 전처리가 양돈 슬러지의 메탄생산퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.524-531
    • /
    • 2012
  • The objective of this study was to investigate the organic solubilization (SCOD) and improvement of methane production for pig slurry by thermal hydrolysis. A sludge cake was pretreated by thermal hydrolysis at different reaction temperatures (200, 220, 250, $270^{\circ}C$). Ultimate methane potential (Bu) was determined at several substrate and inoculum (S/I) ratios (1:9, 3:7, 5:5, 7:3 in volume ratio) by biochemical methane potential (BMP) assay for 73 days. Pig slurry SCOD were obtained with 98.4~98.9% at the reaction temperature of $200{\sim}270^{\circ}C$. Theoretical methane potentials ($B_{th}$) of thermal hydrolysates at the reaction temperature of $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$ were 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$, respectively. $B_u$ of $200^{\circ}C$ thermal hydrolysate were decreased from $0.197Nm^3\;kg^{-1}-VS_{added}$ to $0.111Nm^3\;kg^{-1}-VS_{added}$ with the changes of S/I ratio from 1:9 to 7:3, and also $B_u$ of different thermal hydrolysates ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$) showed same tendency to $B_u$ of $200^{\circ}C$ thermal hydrolysate according to the changes of S/I ratio. Anaerobic biodegradability ($B_u/B_{th}$) of $200^{\circ}C$ thermal hydrolysate at different S/I ratios was decreased from 32.2% for S/I ratio of 1:9 to 17.6% for S/I ratio of 7:3. $B_u/B_{th}$ of $220^{\circ}C$, $250^{\circ}C$, and $270^{\circ}C$ thermal hydrolysat were decreased from 36.4% to 9.6%, from 31.3% to 0.8%, and from 26.6% to 0.8%, respectively, with the S/I ratio change, respectively. In this study, the rise of thermal reaction temperature caused the decrease of anaerobic digestibility and methane production while organic materials of pig slurry were more solubilized.

Seasonal Changes of Microflora in Paddy Soil with Long-term Application of Organic Matter (유기물(有機物) 연용답토양(連用畓土壤)에 있어서 미생물상(微生物相)의 계절적(季節的) 변화(變化))

  • Lee, Sang-Bok;Choi, Yoon-Hee;Lee, Kyung-Bo;Yoo, Chul-Hyun;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 1995
  • This experiment was carried out to investigate the effects on the seasonal population change of microflora of long-term application of organic matters in Fluvio-Alluvial plain of Jeonbug series. As organic matters, rice straw and compost of 5 and 10ton/ha, which were applied with the different nitrogen fertilizer level of 0, 150kg/ha into the soil 15cm deep, respectively. A number of total aerobic bacteria were gradually increased from just after water-logging before rice transplanting to pancle formations stage, afterthat decreased at harvest. The other side, a number of actinomycetes, fungi and cellulose-decomposers were slightly fluctuated until panicle formation stage and increased at havesting stage. In general, microorganism numbers were higher in organic matter with long-term nitrogen fertilizer applied plot, while cellulose-decomposers were higher in only organic matter applied plot. The microorganisms of ammonia-oxidizing, nitrate-reducing and nitrite-oxidizing, and denitrifying bacteria showed the maximum number at harvest stage, at panicle formation stage and at early tillering stage, respectively, while that of ammonifying bacteria were variable if nitrogen fertilizer applied or not at the respective periods in nitrogen cycle under water-logging. These bacteria were numerous in the organic matter plots combined with nitrogen fertilizer, especially, denitrifying bacteria in rice straw, others no difference.

  • PDF

Nano-dispersion of the Organics in the Organic/Inorganic Sol-Gel Hybrid Matrices (유/무기 졸-겔 재료에 광기능성 유기물의 나노 분산)

  • 백인찬;석상일;진문영;이창진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.218-218
    • /
    • 2003
  • 21세기 정보기반사회에서는 정보처리량의 증가로 인한 대용량 정보 교환을 위하여 신호처리의 고속화/광대역화가 요구되어진다. 완전 광통신망의 구축에 의한 대용량의 광통신을 위해서는 고속이며, 집적화가 가능한 저가의 광전자 소자 개발이 필요하다. 광전자 소자 중 전기-광학 변조 효과를 이용한 광소자의 구현을 위한 소재로서 극성 배향된 비선형 광학 유기고분자 소재는 가공성이 뛰어나 원하는 형태의 광도파로로 제조할 수 있다는 장점에 많은 연구가 진행되고 있다. 그러나 아직 전기광학계수의 향상과 더불어 유기고분자가 가지고 있는 열 및 광화학적 안정성이 낮은 기본적인 문제점과 폴링(poling)에 의해 배향된 극성이 시간에 따라 완화되는 문제의 해결이 요구되고 있다. 이러한 문제점 해결을 위한 기초 연구로 유기물을 졸-겔 매트릭스에 나노 사이즈로 분산하는 방법으로 유기물의 내화학적 안정성을 향상하고자 시도하였다. 잘 알려져 있는 바와 같이 유/무기 하이브리드 졸-겔 재료는 광 투광성이 우수하고 저온에서의 재료 합성과 저가 공정이 가능하여 광기능성 유기물의 호스트(host) 재료로 많이 연구되고 있다. 본 연구에서는 MTMS(methyltrimethoxysilane)과 TEOS (tetra-ethoxyorthosilicate)를 0-100 mol%로 혼합하고 가수분해하는 방법으로 친수성/친유성 특성을 제어하여, 분산되는 유기물의 사이즈를 조정하였다. 각 실험 조건에 따른 유기물 분산체의 크기를 SEM 및 TEM으로 관찰하였으며, 나노 사이즈로 분산된 유/무기 졸-겔 코팅막의 광학적 특성을 프리즘 커플러를 이용하여 조사하였다.

  • PDF