• 제목/요약/키워드: 유기랭킨 사이클

검색결과 96건 처리시간 0.021초

급액가열기, 재생기를 적용한 유기랭킨사이클(ORC)의 열역학적 효율에 관한 해석적 연구 (Thermodynamic Efficiencies of Organic Rankine Cycles with a Feed Liquid Heater or Regenerator)

  • 박창용;홍웅기;김정민
    • 설비공학논문집
    • /
    • 제23권10호
    • /
    • pp.662-669
    • /
    • 2011
  • A numerical study was performed for thermodynamic efficiencies of a basic ORC (Organic Rankine Cycle), ORC with a FLH (Feed Liquid Heater), and ORC with a regenerator. The efficiencies of the basic ORC were higher in the order of R113, R123, R245ca, and R245fa for its working fluids. It was confirmed that an optimal FLH pressure existed to maximize efficiency of the ORC with a FLH. A correlation was developed to predict the optimal FLH pressure as a function of evaporation and condensation pressure and its average absolute deviation was 0.505%. The efficiency enhancement of the basic ORC with a FLH was higher than that with a regenerator. It was presented that the basic ORC efficiency could be improved more than 10% by a FLH with $30^{\circ}C$ condensation and over $110^{\circ}C$ evaporation temperatures.

지역난방용 중온수 열원 유기랭킨사이클 성능 특성 (Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source)

  • 박우진;유호선
    • 플랜트 저널
    • /
    • 제12권1호
    • /
    • pp.29-36
    • /
    • 2016
  • 최근 늘어가는 에너지 수요를 화석연료에만 의존 할 수 없게 되면서 대체 에너지의 중요성이 대두되고 있으며, 이러한 상황에서 유기랭킨 사이클(Organic Rankine Cycle, 이하 ORC)등 산업체 폐열, 태양열, 지열, 해수 온도차 등의 저등급 에너지를 효과적으로 활용하기 위한 많은 연구가 진행되고 있다. 본 연구에서는 지역난방 축열시 회수수를 혼합하지 않고 ORC를 이용하여 하부사이클을 구성하여 성능해석 상용프로그램으로 작동유체 및 운전특성을 예측하였다. 지역난방수 운전조건인 열원 온도 $120^{\circ}C$, 열원 유량 $163m^3/h$(회수수 유량을 고려한 값)로 하고 이 온도에 적합한 다수의 작동유체를 선정하여 성능해석을 수행하였으며, 최고의 성능이 나타난 R245fa의 경우 269.2kW출력과 6.37%효율을 얻을 수 있었다. 또한 ORC 시스템의 응축기 압력변화에 따라 지역난방 회수수 온도가 $57.3{\sim}85^{\circ}C$범위에 형성됨으로서 보일러 입구온도상승에 따른 연료 절감 효과가 예상되었다.

  • PDF

저온 열원 HFC-134a 유기랭킨사이클의 출력 극대화 (Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a)

  • 백영진;김민성;장기창;이영수;나호상
    • 대한기계학회논문집B
    • /
    • 제35권1호
    • /
    • pp.53-60
    • /
    • 2011
  • 본 연구에서는 지열발전 등과 같은 저온 열원을 에너지원으로 하는 발전에 응용될 수 있는 HFC-134a 유기랭킨사이클의 출력 극대화를 수행하였다. 기존의 연구와는 달리, 본 연구에서는 열교환기해석에 유한체적법을 적용함으로써 작동유체의 열전달 및 압력강하 특성을 고려하였다. 또한, 열원과 냉각수의 입구온도 및 유량, 그리고 사이클을 구성하는 열교환기들의 총 전열면적을 구속 조건으로 함으로써, 기존 연구들에 비해 보다 현실적인 결과를 얻을 수 있도록 하였다. 사이클의 출력은 3 개의 설계인자를 이용하여 최적화 하였다. 시뮬레이션 결과, 출력을 극대화 시킬 수 있는 설계인자들의 최적조합이 존재함을 보였다. 또한, 출력 향상을 위해서는 증발과정의 개선이 우선적으로 필요함을 보였다.

유기랭킨사이클에서 핀치온도차의 변화에 따른 열교환기의 열역학적 성능특성 (Characteristics of Thermodynamic Performance of Heat Exchanger in Organic Rankine Cycle Depending on Pinch Temperature Difference)

  • 김경훈;정영관;박상희
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.590-599
    • /
    • 2015
  • In this paper a performance analysis is carried out based on the first and second laws of thermodynamics for heat exchanger in organic Rankine cycle (ORC) for the recovery of low-temperature finite thermal energy source. In the analysis, effects of the selection of working fluid and pinch temperature difference are investigated on the performance of the heat exchanger including the effectiveness of the heat exchanger, exergy destruction, second-law efficiency, number of transfer unit (NTU), and pinch point. The temperature distribution are shown depending on the working fluids and the pinch temperature difference. The results show that the performance of the heat exchanger depends on the pinch temperature difference sensitively. As the pinch temperature increases, the exergy destruction in the evaporator increases but the effectiveness, second law efficiency and NTU decreases.

재생 유기랭킨사이클을 이용한 직렬 열병합 발전 시스템의 열역학적 성능 특성 (Thermodynamic Performance Analysis of a Cogeneration System in Series Circuit Using Regenerative ORC)

  • 김경훈;박배덕;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.278-286
    • /
    • 2015
  • This paper presents the analytical results of the thermodynamic performance characteristics for a cogeneration system using regenerative organic Rankine cycle (ORC) driven by low-grade heat source. The combined heat and power cogeneration system consists of a regenerative superheated ORC and an additional process heater in a series circuit. Eight working fluids of R134a, R152a, propane, isobutane, butane, R245fa, R123, and isopentane are considered for the analysis. Special attention is paid to the effect of turbine inlet pressure on the system performance such as thermal input, net power and useful heat productions, electrical, thermal, and system efficiencies. The results show a significant effect of the turbine inlet pressure and selection of working fluid on the thermodynamic performance of the system.

작동유체에 따른 유기랭킨사이클(ORC)의 열역학적 성능에 관한 연구 (Study of Working Fluids on Thermodynamic Performance of Organic Rankine Cycle (ORC))

  • 김경훈
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.223-231
    • /
    • 2011
  • The thermal efficiency of energy-to-power conversion becomes uneconomically low when the temperature of heat source drops below $370^{\circ}C$. ORC (Organic Rankine Cycle) has attracted much attention in last few years due to its potential in reducing consumption of fossil fuels and relaxing environmental problems, and its favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC using nine working fluids is comparatively assessed. Special attention is paid to the effect of system parameters such as turbine inlet temperature and pressure on the characteristics of the system such as volumetric flow rate and quality at turbine exit, latent heat, net work as well as thermal efficiency. Results show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as the thermal efficiency. Results also show that the system efficiencies become same irrespective of kind of working fluid when the temperature of heat source decreases to low range.

화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석 (A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant)

  • 정진희;임석연;김범주;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

LNG 냉열을 열싱크로 이용하는 유기랭킨사이클(ORC)의 작동유체에 따른 성능 특성 (Effects of Working Fluids on the Performance Characteristics of Organic Rankine Cycle (ORC) Using LNG Cold Energy as Heat Sink)

  • 김경훈;하종만;김경천
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents thermodynamic performance analysis of organic Rankine cycle (ORC) using low temperature heat source in the form of sensible energy and using liquefied natural gas (LNG) as heat sink to recover the cryogenic energy of LNG. LNG is able to condense the working fluid at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the mathematical model, a parametric analysis is conducted to examine the effects of eight different working fluids, the turbine inlet pressure and the condensation temperature on the system performance. The results indicate that the thermodynamic performance of ORC such as net work production or thermal efficiency can be significantly improved by the LNG cold energy.

유기랭킨사이클을 이용한 병렬 열병합 발전시스템의 열역학적 이론 성능 특성 (Theoretical Characteristics of Thermodynamic Performance of Combined Heat and Power Generation with Parallel Circuit using Organic Rankine Cycle)

  • 김경훈
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.49-56
    • /
    • 2011
  • In this study a novel cogeneration system driven by low-temperature sources at a temperature level below $190^{\circ}C$ is investigated by first and second laws of thermodynamics. The system consists of Organic Rankine Cycle(ORC) and an additional heat generation as a parallel circuit. Seven working fluids of R143a, R22, R134a, R152a, $iC_4H_{10}$(isobutane), $C_4H_{10}$(butane), and R123a are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid and optimum turbine inlet pressure are considered to extract maximum power from the source. Results show that due to a combined heat and power generation, both the efficiencies by first and second laws can be significantly increased in comparison to a power generation, however, the second law efficiency is more resonable in the investigation of cogeneration systems. Results also show that the working fluid for the maximum system efficiency depends on the source temperature.

유기랭킨사이클 적용 스크롤 팽창기 성능 특성 연구 (Operating Characteristics of a Scroll Expander Used in Organic Rankine Cycle)

  • 신동길;김영민;김창기
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.776-781
    • /
    • 2011
  • The rapid increases in global energy demand and global warming need renewable energy sources such as solar thermal energy, biomass energy and waste heat. A ORC-based micro-CHP system(< 10 kWe) is one of the effective means to use renewable energy and solve energy problems because of its compactness, flexibilities and lower cost compared to other systems. The most important core components of the ORC is the expander which has a strong effect on the cycle efficiency. In the range of power output from 1 to 10 kW, the scroll expander is a good choice due to its performance and reliability. In this study, we have carried out an experimental study on an ORC equipped with oil-free scroll expander working with refrigerant R134a. We have measured power output and thermal efficiencies of the ORC and analyzed correlation between volumetric efficiencies of the expander and thermal efficiencies of the ORC.