• Title/Summary/Keyword: 유격 해석

Search Result 15, Processing Time 0.023 seconds

Non-linear Shimmy Analysis of a Nose Landing Gear with Free-play (유격을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Hwang, Jae-Up;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.973-978
    • /
    • 2010
  • In this paper, we studied the shimmy phenomena of an aircraft nose landing gear considering free-play. Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. This phenomena is caused by a couple of conditions such as low torsional stiffness of the strut, friction and free-play in the gear, wheel imbalance, or worn parts, and it may make an aircraft unstable. Free-play non-linearity is linearized by the described function for a stability analysis in a frequency domain, and time marching is performed using the fourth-order Runge-Kutta method. We performed the numerical simulation of the nose landing gear shimmy and investigated its linear and nonlinear characteristics. From the numerical results, we found limit-cycle-oscillations at the speed under linear shimmy speed for the case considering free-play and it can be concluded that the shimmy stability can be decreased by free-play.

Nonlinear Aeroelastic Analysis of a Wing with Control Surface Freeplay in Subsonic/Transonic Regions (조종면 유격이 있는 날개의 아음속 및 천음속에서의 비선형 공탄성 해석)

  • Kim, Kyung-Seok;Kim, Jong-Yun;Yoo, Jae-Han;Bae, Jae-Sung;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-301
    • /
    • 2007
  • The aeroelastic characteristics of a wing with control surface freeplay are investigated. The transonic small disturbance equation is used for unsteady aerodynamic forces in subsonic/transonic region. The fictitious mass method is introduced to apply a modal approach to nonlinear structural models. Nonlinear aeroelastic time responses are calculated by the coupled time integration method. Using these methods, an efficient aeroelastic analysis is achieved for aerodynamic and structural nonlinearities simultaneously. The effects of the aerodynamic nonlinearity, initial flap amplitude, and freeplay magnitude in aeroelastic characteristics are investigated in this study.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

Caulking and Gap Analysis for a Ball Joint (볼 조인트의 코킹 및 유격해석)

  • Hwang, Seok-Cheol;Kim, Jong-Kyu;Seo, Sun-Min;Han, Seung-Ho;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1077-1082
    • /
    • 2011
  • Ball joint is a rotating and swiveling element that is typically the interface between two parts. In an automobile, the ball joint is the component that connects the control arms to the steering knuckles by playing a role of bearing. The ball joint can also be installed in linkage systems for motion control applications. This paper describes the simulation strategy for a ball joint analysis, considering manufacturing process. Its manufacturing process can be divided into plugging and spinning. Then, the interested response is selected as the stress distribution generated between its ball and bearing. In this paper, a commercial code of NX DAFUL 2.0 using an implicit integration method is introduced to calculate the response. In addition, the gap analysis is performed to investigate the fitness. Also, the optimum design is suggested through case studies.

Study on Structural Strength Analysis of Automotive Seat Frame (자동차 시트 프레임의 구조 강도 해석에 관한 연구)

  • Kim, Key-Sun;Kim, Sung-Soo;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Seat is the part relevant to comfortableness and safety among automotive parts directly. It also should have sufficient stiffness and strength to satisfy these conditions and ensure the safety of passenger. Automotive seat is modelled with 3D and is simulated with structural analyses about three kinds of experiments by before and after gap, side gap, before and after moment strength. As analysis result, deformation angles of $0.038^{\circ}$ and $0.04^{\circ}$ are respectively shown at before and after gap test, side gap test. Through before and after the moment strength test, maximum total deformations of 0.18946mm and 3.2482mm are respectively shown at front and rear loads. By the study result of no excessive deformation and no fracture at automotive seat frame, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Fracture Behavior of Dowel Joint of Concrete Slab Track (콘크리트궤도 슬래브의 다웰 연결부 파괴 거동)

  • Kwon, Kusung;Jang, Seung Yup;Chung, Wonseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2125-2133
    • /
    • 2013
  • Recently, an interest on joint behavior between adjacent concrete slab tracks has increasing due to large application of such track system. Dowel bars are widely used to improve load transfer capacity across the joints. Dowel bars reduce the deflections and stresses by transferring the load between the slabs. This study proposes the lumped shear spring model to efficiently model dowel joints of adjacent slabs. This model includes bearing stiffness between dowel bar and concrete as well as dowel gap. Strength of the proposed spring model is evaluated based on Concrete Capacity Design method under the assumption of shear failure mode in the joints. Experiments are also performed up to failure to evaluate the accuracy of the proposed model. It has been observed that the proposed model is able to predict initial nonlinearity due to dowel gap, and capture material nonlinearity of the test slabs. Thus, it is recommended that the proposed model can be effectively applied to the dowel joints of concrete slab track.

Nonlinear Aeroelastic Analysis of Flat Plate Wing with Flaperon (플래퍼론이 있는 평판 날개의 비선형 공탄성해석)

  • Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2006
  • The linear and nonlinear aeroelastic analyses of a flat plate wing with flaperon have been performed by using frequency-domain and time-domain analyses. Natural modes from free vibration analysis and a doublet-hybrid method (DHM) are used for the computation of subsonic unsteady aerodynamic forces. The flaperon hinge is represented by a free-play spring and is linearized by the described function method. The linear and nonlinear flutter analyses indicate that flapping mode of the flaperon, the hinge stiffness and free-play of hinge have significant effects on the aeroelastic characteristics. From the nonlinear flutter analysis, different modes like stable and unstable limit-cycle-oscillation are observed in same flutter velocity depending on initial conditions.

  • PDF

Aeroelastic Analysis of a Wing with Freeplay Considering Effects of Angle-of-Attack (받음각 효과를 고려한 유격이 있는 날개의 공탄성 해석)

  • Kim Jong-Yun;Yoo Jae-Han;Park Young-Keun;Lee In
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.295-300
    • /
    • 2005
  • The freeplay, one of the concentrated structural nonlinearities, is inevitable for control surfaces of a real air vehicle due to normal wear of components and manufacturing mismatches. Also aerodynamic nonlinearities caused by a shock wave occur in transonic region. In practice, these nonlinearities induce the limit cycle oscillation (LCO) and decrease the transonic flutter speed. In this study, the fictitious mass method is used to apply a modal approach to nonlinear structural models due to freeplay. The transonic small-disturbance (TSD) equation is used to calculate unsteady aerodynamic forces in transonic region. Nonlinear aeroelastic time responses are predicted by the coupled time integration method (CTIM). This method was also applied to a 3D all-movable control wing to investigate its nonlinear aeroelastic responses. The angle of attack effect on the LCO characteristics has been found to be closely related with the initial pitching moment.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.