• Title/Summary/Keyword: 위험회전수

Search Result 130, Processing Time 0.03 seconds

A Comparative Study of Radiation Therapy Planning between Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Nasopharyngeal Cancer (비인두암의 방사선치료 시 삼차원입체조형 치료기법과 용적세기조절회전치료기법의 비교연구)

  • Kim, Ji-Sung;Lee, Seok-Ho;Lee, Seung-Heon;Kim, Hye-Young;Choi, Jin-Ho;Lee, Kyu-Chan;Kim, Dong-Young
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • 연구목적 : 비인두암 환자들을 대상으로 방사선치료 시 삼차원입체조형치료기법과 용적세기조절회전치료기법을 비교하고 이하선을 포함한 정상조직 보호에 있어 그 차이점을 알아 보고자 본 연구를 시행하였다. 대상 및 방법 : 비인두암 환자 5명을 대상으로 치료계획용 CT(computed tomography)를 시행 후 삼차원입체조형방사선치료계획 과 용적세기조절회전치료계획을 시행하였다. 이를 바탕으로 얻은 선량분포, conformity index(CI) 그리고 선량체적 히스토그램을 통해 손상위험장기(organ at risk)와 계획용표적체적(planning target volume)을 비교 분석하였다. 결 과 : 분석결과 이하선에 조사되는 평균선량이 용적세기조절회전치료계획에서는 43.9%로 삼차원입체조형치료계획에서의 89.4% 보다 유의하게(p=0.043) 감소하였다. 계획용표적체적 conformity index의 경우 용적세기조절회전치료계획 (CI=1.06)에서 삼차원입체조형치료계획(CI=2.55) 보다 유의하게(p=0.043) 향상된 결과를 보였다. 결 론 : 비인두암 환자에서 용적세기조절회전 치료계획 시 삼차원입체조형치료계획 보다 유의하게 이하선에 평균선량이 줄었고 계획용 표적체적에 대한 conformity도 유의하게 향상되는 결과를 보였다. 본 연구가 적은 수의 환자를 대상으로 하였으나 용적세기조절회전치료기법을 시행 시 구강건조증의 발생을 줄일 수 있을 것으로 기대된다. 향후 더 많은 환자군을 대상으로 한 임상연구가 필요할 것으로 사료된다.

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter (다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정)

  • Kee, Young-Jung;Kim, Deog-Kwan;Shin, Jin-Wook
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-59
    • /
    • 2019
  • The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

A Study of Intelligent Head Up Display System for Next Generation Vehicle (차세대 자동차를 위한 HUD 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • In this paper, the intelligent smart monitor system is implemented for the next generation vehicle. to mitigate the numerous effects of distractions within the vehicle, it is vital to put critical information where the driver can use it without affection focus on the road ahead. Audible alarms are useful supplements when used in conjunction with visual displays. But driving is an overwhelmingly visual task. To optimize a vehicle's active safety systems, more than just audible alarms are necessary. The driver needs a visual interface that focuses his or her attention on the road ahead. The most commonly viewed information in a vehicle is from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights provide the driver with an array of fundamental information. TFT LCD, LCD Back light led, plane mirror, lens and controllers parts were designed to intelligent integrated smart monitor system. Finally, in this paper, we analyze intelligent integrated smart monitor system for driver safety vehicles.

Risk Factor for Poor Clinical Outcome in Patients with Retear after Repair of the Rotator Cuff (회전근 개 파열 봉합술 후 재파열 환자에서 불량한 임상 결과의 원인 인자)

  • Lee, Hee Jae;Joo, Il Han;Hur, Jeong Min;Oh, Hyun Keun;Lee, Bong Gun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • Purpose: To evaluate the prognostic factors affecting poor functional outcomes in patients with retear after rotator cuff repair. Materials and Methods: From January 2013 to December 2018, among 631 patients who underwent arthroscopic repair of a rotator cuff tear, 42 patients, who could be followed-up for more than one year and showed a retear of the repaired cuff on magnetic resonance imaging (MRI), were collected retrospectively. The preoperative demographic data, range of motion, American Shoulder and Elbow Surgeons (ASES) score, fatty degeneration, and tear progression on postoperative MRI, as well as other factors that could affect the clinical outcomes, were analyzed. Patients who scored <80 points on the ASES score were allocated to the poor function group. The risk factors for poor clinical outcomes were compared with the group with ASES scores of 80 or above. Results: The postoperative functional results in the group with retear (n=42) after arthroscopic rotator cuff repair showed significant improvement. Univariate analysis revealed the preoperative visual analogue scale (VAS) score and tear progression to have associations with a poor shoulder function. In addition, subscapularis repair was found to be associated with a good shoulder function. The preoperative VAS score and tear progression except for subscapularis repair were independent factors associated with poor clinical outcomes according to multivariate logistic regression analysis. Conclusion: In patients with retear after rotator cuff repair, the preoperative VAS and tear progression in postoperative MRI are factors predicting a poor functional outcome.

Mobile AR-based Obstacle Detection System using RANSAC-based Multi-Planar Method (RANSAC기반의 다중 평면 방식을 이용한 모바일 AR기반 장애물 감지 시스템)

  • Park, Jungwoo;Yang, Hong Ju;Moon, Seong Hyeok;Lee, Narahim;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.601-604
    • /
    • 2021
  • 본 논문에서는 모바일 디바이스의 카메라로부터 얻은 RGB이미지를 분석하여 장애물을 안정적으로 탐지할 수 있는 프레임워크를 제안한다. 본 논문에서는 장애물을 안정적으로 찾기 위해 RANSAC(Random Sample Consensus)기반의 다중 평면 방식을 이용한 위험감지 시스템을 제안한다. 우리의 접근 방식은 RGB영상으로부터 특징점(Feature point)을 추출하고, 특징점을 분석(Feature point analysis)하여 영상내의 평면을 감지한다. 복잡한 지형으로 인해 생성되는 다수의 평면을 RANSAC을 통해 단일 평면으로 정규화하고, 이로부터 특징점을 분류하기 위한 기준점을 계산한다. 모바일 디바이스의 위치와 회전 제약 없이 효과적으로 기준평면(Reference plane)을 탐색할 수 있고, 영상 내 특징점을 실시간으로 계산한다. 다양한 실험을 통해 기준평면과 장애물과의 거리를 파악하여 장애물을 효과적으로 분류하는 결과를 얻었다. 우리의 기법은 실세계에서의 위험요소를 감지하고 모바일 디바이스 사용자의 안전성 확보에 활용할 수 있을 거라 기대한다.

  • PDF

Development of a Traffic Accident Prediction Model and Determination of the Risk Level at Signalized Intersection (신호교차로에서의 사고예측모형개발 및 위험수준결정 연구)

  • 홍정열;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.155-166
    • /
    • 2002
  • Since 1990s. there has been an increasing number of traffic accidents at intersection. which requires more urgent measures to insure safety on intersection. This study set out to analyze the road conditions, traffic conditions and traffic operation conditions on signalized intersection. to identify the elements that would impose obstructions in safety, and to develop a traffic accident prediction model to evaluate the safety of an intersection using the cop relation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on the intersection in developing a traffic accident prediction model fir a signalized intersection. The data for the study was collected at an intersection located in Wonju city from January to December 2001. It consisted of the number of accidents, the road conditions, the traffic conditions, and the traffic operation conditions at the intersection. The collected data was first statistically analyzed and then the results identified the elements that had close correlations with accidents. They included the area pattern, the use of land, the bus stopping activities, the parking and stopping activities on the road, the total volume, the turning volume, the number of lanes, the width of the road, the intersection area, the cycle, the sight distance, and the turning radius. These elements were used in the second correlation analysis. The significant level was 95% or higher in all of them. There were few correlations between independent variables. The variables that affected the accident rate were the number of lanes, the turning radius, the sight distance and the cycle, which were used to develop a traffic accident prediction model formula considering their distribution. The model formula was compared with a general linear regression model in accuracy. In addition, the statistics of domestic accidents were investigated to analyze the distribution of the accidents and to classify intersections according to the risk level. Finally, the results were applied to the Spearman-rank correlation coefficient to see if the model was appropriate. As a result, the coefficient of determination was highly significant with the value of 0.985 and the ranks among the intersections according to the risk level were appropriate too. The actual number of accidents and the predicted ones were compared in terms of the risk level and they were about the same in the risk level for 80% of the intersections.

Analysis of Lateral Behavior of PSC Bridge Girders under Wind Load During Construction (시공 중 풍하중에 의한 PSC 교량 거더의 횡방향 거동 해석)

  • Lee, Jong-Han;Kim, Kyung Hwan;Cho, Baiksoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.377-385
    • /
    • 2015
  • The span-lengthening of PSC I girder has increased the risk of lateral instability of the girder with the increases in the aspect ratio and self-weight of the girder. Recently, collapses of PSC I girder during construction raise the necessity of evaluating the lateral instability of the girder. Thus, the present study evaluated the lateral behavior and instability of PSC I girders under wind load, regarded as one of the main causes of the roll-over collapse during construction. Lateral instability of the girder is mainly dependent on the length of the girder and the stiffness of the support. The analysis results of this study showed the decrease in the critical wind load and the increase in the critical deformation and angle of the girder, leading to the lateral instability of the girder. Finally, this study proposed analytical equations that can predict the critical amount of wind load and lateral deformation of the girder, which would provide quantitative management values to maintain lateral stability of PSC I girder during construction.

The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer (콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

The Critical Speed Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission (기계유압식 무단변속기용 기어트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Choi, Sung Kwang
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.71-78
    • /
    • 2017
  • The power train of hydro-mechanical continuously variable transmission (HMCVT) for 8-ton class forklift includes hydro-static units, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The helical & planetary gears are key components of HMCVT's power train wherein strength problems are the main concerns including gear bending stress, gear compressive stress, and scoring failure. Many failures in power train gears of HMCVT are due to the insufficient gear strength and resonance problems caused by major excitation forces, such as gear transmission error of mating gear fair in the transmission. In this study, wherein excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate the power train gears' critical speeds. Mode shapes and natural frequencies of the power train gears are calculated by CATIA V5. These are used to predict resonance failures by comparing the actual working speed range with the critical speeds due to the gear transmission errors of HMCVT's power train gears.

A study on the damage of cutter bit due to the rotation speed of shield TBM cutter head in mixed ground (복합지반에서의 쉴드 TBM 커터헤드의 회전속도에 따른 커터비트 손상에 관한 실험적 연구)

  • Kang, Eun-Mo;Kim, Yong-Min;Hwang, In-Jun;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.403-413
    • /
    • 2015
  • This paper presents the cutter bit damage due to the rotation speed of shield TBM cutter head in the mixed ground. The efficient of cutter bits and disk cutter are very important for tunnelling in mixed ground. In particular, this research is focused on the performance of cutter bits during excavation in mixed ground which is consist of the weathered soil and rock formation. In order to carry out this research, the experimental works are prepared performed by using the scaled shield TBM cutter bits evaluation machine developed. The mixed ground is prepared considering with a scale effect of tunnel size. Three different rotation speeds of shield TBM cutter head (i.e. 2, 3, 4 rpm) are applied in the experimental work. The drag forces acting on the cutter bits are measured at each cutter bit during rotation of cutter head. It is also analysed the variation of drag forces due to the rotation speed of shield TBM cutter head. The results of this research are clearly shown that the drag forces acting on the cutter bits are jumped up at the boundary between weathered soil and rock. It is also indicated that the jamping drag forces are increased with increasing the rotation speed of the cutter head. It is found from the research that the higher rotation speed of shield TBM cutter head will be high risk in the mixed ground. It is, therefore, suggested that the use of lower rotation speed of shield TBM cutter head is recommended for reducing the cutter bit damage in practice.