• Title/Summary/Keyword: 위치추적장치

Search Result 270, Processing Time 0.022 seconds

Full mouth rehabilitation of a panfacial fracture patient with bilateral condylar fracture (다발성 안면골절환자의 교합회복 증례)

  • Park, Go-Woon;Cha, Min-Sang;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.159-169
    • /
    • 2014
  • Panfacial fractures require complex multidisciplinary approaches for treatment. Functional stability of bilateral condylar-disc complex should be the goal of the treatment. A patient with complex clinical panfacial fractures, including a bilateral condylar fractures visited our clinic. Facial asymmetry, insufficient vertical space and multiple missing teeth of the patient were major problems. Closed reduction and splint treatment were tried for stable condylar position. A functional and esthetic rehabilitation was accomplished by using implants and full mouth rehabilitaion. Potential possibilities of unstable occlusion should be prevented with night guard and periodic occlusal adjustment.

Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking (영상기반 물체추적에 의한 소형 쿼드로터의 자세추정 성능향상)

  • Kang, Seokyong;Choi, Jongwhan;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.444-450
    • /
    • 2015
  • The accuracy of small and low cost CCD camera is insufficient to provide data for precisely tracking unmanned aerial vehicles(UAVs). This study shows how UAV can hover on a human targeted tracking object by using CCD camera rather than imprecise GPS data. To realize this, UAVs need to recognize their attitude and position in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for an UAV to estimate of his attitude by environment recognition for UAV hovering, as one of the best important problems. In this paper, we describe a method for the attitude of an UAV using image information of a maker on the floor. This method combines the observed position from GPS sensors and the estimated attitude from the images captured by a fixed camera to estimate an UAV. Using the a priori known path of an UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a marker on the floor and the estimated UAV's attitude. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the UAV. The Kalman filter scheme is applied for this method. its performance is verified by the image processing results and the experiment.

Design of A Controller For Reducing Jerk-Motion In An Active Vision System (능동 시각 시스템을 위한 저크 발생 억제 제어기 설계)

  • Kim, Do-Yoon;Kim, Do-Hyoung;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2429-2431
    • /
    • 2003
  • 능동 시각 시스템은 카메라 시선 방향을 조정할 수 있는 장치로, 기존의 고정식 스테레오 카메라가 가질 수 없는 여러 가지 장점으로 인해 최근 많은 연구가 진행되고 있다. 능동 시각 시스템을 이용하여 움직이는 물체를 추적하는 경우, 목표 위치가 제어 주기마다 바뀌게 되는데 이 때 시스템의 현재 속도를 고려하지 않는다면, 급격한 속도의 변화로 인해 저크(jerk)가 크게 발생하게 된다. 저크는 물체 추적 성능에도 영향을 미칠 뿐만 아니라, 전원단의 잡음 발생을 유발시켜 제어기의 동작을 방해하며, 시스템에 기계적인 손상을 주기도 한다. 이러한 문제점을 해소하기 위해 기존의 방법들은 스플라인이나 고차 다항식의 계산 방법을 사용하였으나 계산량의 복잡도로 인해 다축 제어가 필요한 능동 시각 시스템에서 구현하기가 어렵다. 본 논문에서는 삼각 함수를 이용한 종(bell) 모양의 속도 프로파일을 이용해서 저크 탄생을 억제할 수 있는 제어기 구조를 제안한다. 제안된 방법은 간단한 계산량으로 저가의 마이크로프로세서에서도 실시간으로 동작이 가능하며 임의의 시점에 임의의 속도로 움직이고 있는 시스템에 저크를 최소화할 수 있는 지령 속도를 만들어 낼 수 있다. 제안된 방법은 시뮬레이션과 실제 시스템에 적용하여 그 유용성을 검증하였다.

  • PDF

Parameter Calibration of Car Following Models Using DGPS DATA (DGPS 수신장치를 활용한 차량추종 모형 파라미터 정산)

  • Kim, Eun-Yeong;Lee, Cheong-Won;Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.17-27
    • /
    • 2006
  • Car following model is a theory that examines changes of condition and interrelationship of acceleration deceleration. headway, velocity and so on closely based on the hypothesis that the Posterior vehicle always follows the preceding vehicle. Car following mode) which is one of the research fields of microscopic traffic flow was first introduced in 1950s and was in active progress in 1960s. However, due to the limitation of data gathering the research depression was prominent for quite a while and then soon was able to tune back on track with development in global positioning system using satellite and generalization of computer use. Recently, there has been many research studies using reception materials of global Positioning system(GPS). Introducing GPS technology to traffic has made real time tracking of a vehicle position possible. Position information is sequential in terms of time and simultaneous measurement of several vehicles in continuous driving is also practicable. Above research was focused on judging whether it is feasible to overcome the following model research by adopting the GPS reception device that was restrictively proceeded due to the limitation of data gathering. For practical judgment, we measured the accuracy and confidence level of the GPS reception devices material by carrying out a practical experiment. Car following model is also being applied in simulations of traffic flow analysis, but due to the difficulty of estimating parameters the basis of the above result. it is our goal to produce an accurate calibration of car following model's parameters that is suitable in this domestic actuality.

Development of Acoustic Positioning System for ROV using SBL System (SBL방식을 이용한 무인잠수정의 수중초음파 위치측정시스템 개발)

  • Yu, Son-Cheol;Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.808-814
    • /
    • 2010
  • In this paper we executed a SBL(Short Baseline) underwater acoustic positioning system that is a kind of underwater position estimation system to estimates the 3-dimensional position of ROV(Remotely Operated Vehicle) using hydrophones and DAQ(Data Acquisition) system in the basin which dimensions are $3{\times}3{\times}1.7(m)$. For this experiment, we let 4 hydrophones in different positions of the basin for receiver and 1 hydrophone is fixed on the underwater vehicle for transmitting sensor(pinger). These five hydrophones are communicated with each other to find the 3-D positions of the moving ROV in the basin. The measured signals are collected by DAQ system and the positions of the ROV are plotted by LabView program in real-time. To estimate the position of the ROV we used a trigonometric method. In X and Y plane the estimated data has a small errors but in Z plane the estimated data has large errors so we cannot use this data for position control. One solution of this problem is using depth sensor that implemented of the underwater vehicle. Hereafter, we will test in the ocean using designed SBL system.

Development of a Solar Tracker using LabVIEW for the enhancement of Solar Energy Utilization (LabVIEW 적용 태양추적장치 개발과 태양에너지이용의 활성화)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Oh, Won-Jong;Kuan, Chen;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.98-107
    • /
    • 2010
  • This paper introduces step by step procedures for the design, fabrication and operation of a solar tracking system. The system presented in this study consists of motion controllers, motor drives, step-motors, feedback devices and other accessories to support its functional stability. CdS sensors are used to constantly generate feedback signals to the controller, which assures a high-precision solar tracking even under adverse conditions. It enables instant correction if the system goes off track by strong winds causing gear backlash. A parabolic dish concentrator is mounted on the tracking system whose diameter was 30cm. The solar position data, in terms of azimuth and elevation, sunrise and sunset times were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.

The Development of the Solar Tracking System with High Accuracy by using LabVIEW (LabVIEW를 활용한 고정밀도 태양추적장치 개발)

  • Oh, Seung-Jin;Cho, Yil-Sik;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.31-36
    • /
    • 2009
  • There have been many solar tracking systems developed for the high accuracy in solar tracking. One of the key components of any motion control system is software. LabVIEW offers an ideal combination of flexibility, ease-of-use and well-integration with other I/O pieces for developing solar tracking system. Real-time solar positions which vary with GPS's data are used simultaneously to control the solar tracker by a chain of operating modes between the open and closed loops. This paper introduces a step by step procedure for the fabrication and performance assessment of a precision solar tracking system. The system developed in this study consists of motion controllers, motor drives, step-motors, feedback devices and application. CRD sensors are applied for the solar tracking system which play a primary role in poor conditions for tracking due to a gear backlash and a strong wind. Mini-dish was used as a concentrator for collecting sun light. The solar position data, in terms of azimuth and elevation, sunrise and sunset times was compared with those of KASI(Korea Astronomy & Space Science Institute). The results presented in this paper demonstrate the accuracy of the present system in solar tracking and utilization.

  • PDF

Analysis of Horizontal Neutron Reflectometer for Nanointerfaces Using McStas (나노 계면분석을 위한 수평형 중성자 반사율 측정장치의 McStas 시뮬레이션 분석)

  • Kwon, Oh-Sun;Shin, Kwan-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2007
  • A new horizontal neutron reflectometer has been designed and now under construction at the HANARO, 30 MW research reactor, in Daejon, Korea. We performed simulations of neutron ray-tracing to evaluate the performance of all of the optical components of the instrument with a Monte Carlo technique using McStas. The feasible wavelength of the incident neutron beam is $2.5{\AA}$. It produces a q-range up to $0.126{\AA}^{-1}$ with a supermirror as a deflector. Our studies showed improvement of the performance of the guide tube and monochromators. Although the performance is limited in q-range, it promises to be the first reflectometer in Korea for the study of free surfaces, which is currently in demand.

Development of Safety Devices for Marine Leisure (해양레저 안전장비 개발)

  • Ku Ja-Young;Yim Jeong-Bin;Lee Je-Eung;Nam Taek-Keun;Jeong Joong-Sik;Park Seong-Hyeon;Yang Weon-Jae;Ahn Yeong-Sub
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.241-246
    • /
    • 2006
  • This paper describes two kinds of personal hand-held electronic devices to support marine leisure safety. The one is Radar response-type safety device triggering by the pulse signal from a commercial 9GHz-band Radar to provide quick search and rescue with combined civilian-government-military fleets. The other one is M-RFID (Marine Radio Frequency IDentification) based safety electronic device using 900MHz Tx/Rx with spread spectrum frequency hopping and GPS. Through the field tests at sea using Korea Coast Guard's warship the operating performances are verified. Further plan for practical use of each device was also discussed.

  • PDF

A Real-time Interactive Shadow Avatar with Facial Emotions (감정 표현이 가능한 실시간 반응형 그림자 아바타)

  • Lim, Yang-Mi;Lee, Jae-Won;Hong, Euy-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.506-515
    • /
    • 2007
  • In this paper, we propose a Real-time Interactive Shadow Avatar(RISA) which can express facial emotions changing as response of user's gestures. The avatar's shape is a virtual Shadow constructed from the real-time sampled picture of user's shape. Several predefined facial animations overlap on the face area of the virtual Shadow, according to the types of hand gestures. We use the background subtraction method to separate the virtual Shadow, and a simplified region-based tracking method is adopted for tracking hand positions and detecting hand gestures. In order to express smooth change of emotions, we use a refined morphing method which uses many more frames in contrast with traditional dynamic emoticons. RISA can be directly applied to the area of interface media arts and we expect the detecting scheme of RISA would be utilized as an alternative media interface for DMB and camera phones which need simple input devices, in the near future.

  • PDF