• Title/Summary/Keyword: 위치결정오차

Search Result 496, Processing Time 0.025 seconds

Determination of Stereotactic Target Position with MR Localizer (자기공명영상을 이용한 두개부내 표적의 3차원적 위치결정)

  • 최태진;김옥배;주양구;서수지;손은익
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.67-77
    • /
    • 1996
  • Purpose: To get a 3-D coordinates of intracranial target position was investicated in axial, sagittal and coronal magnetic resonance imaging with a preliminary experimented target localizer. Material and methods : In preliminal experiments, the localizer is made of engineering plastic to avoid the distrubance of magnetic field during the MR image scan. The MR localizer displayed the 9 points in three different axial tomogram. The bright signal of localizer was obtjained from 0.1~0.3% of paramagnetic gadolinium/DTPA solution in T1WI or T2WI. In this study, the 3-D position of virtual targets were examined from three different axial MR images and the streotactic position was compared to that of BRW stereotactic system in CT scan with same targets. Results: This study provided the actual target position could be obtained from single scan with MRI localizer which has inverse N-typed 9 bars. This experiment was accomplished with shimming test for detection of image distortion in MR image. However we have not found the image distortion in axial scan. The maximum error of target positions showed 1.0 mm in axial, 1.3 mm for sagittal and 1.7 mm for coronal image, respectivelly. The target localization in MR localizer was investicated with spherical virtual target in skull cadaver. Furthermore, the target position was confirmed with CRW stereotactic system showed a 1.3 mm in discrepancy. Summary : The intracranial target position was determined within 1.7 mm of discrepancy with designed MR localizer. We found the target position from axial image has more small discrepancy than that of sagittal and coronal image.

  • PDF

Precise Relative Positioning for Formation Flying Satellite using GPS Carrier-phase Measurements (GPS 반송파 위상을 사용한 편대비행위성 상대위치결정 연구)

  • Park, Jae-Ik;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1032-1039
    • /
    • 2012
  • The present paper deals with precise relative positioning of formation satellites with long baseline in low Earth orbit making use of L1/L2 dual frequency GPS carrier phase measurements. Kinematic approach means to describe the motion of objects without taking its mass/dynamics model into consideration. The advantage of the kinematic approach is that information about dynamics of the system is not applied, which gives more flexibility and could improve the scientific interest of the observations made by the mission. The ionosphere terms, which are not canceled by double differenced measurement equation in the case of the long baseline, are explicitly estimated as unknown parameters by extended Kalman filter. The estimated float ambiguities by EKF are solved by existing efficient integer vector search strategy under integer least square condition. For the integer vector search, we employ well known MLAMBDA. Finally, The feasibility and accuracy of processing scheme are demonstrated using the GPS measurements for two satellites in low Earth orbit separated by baselines of 100 km.

VRS-based Precision Positioning using Civilian GPS Code Measurements (가상기준점 기반 코드신호를 이용한 정밀 측위)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2011
  • With the increase in the number of smartphone users, precise 3D positional information is required by various applications. The positioning accuracy using civilian single-frequency pseudoranges is at the level of 10 m or so, but most applications these days are asking for a sub-meter level Therefore, instead of an absolute positioning technique, the VRS-based differential approach is applied along with the correction of the double-differenced (DD) residual errors using FKP (Flachen-Korrektur-Parameter). The VRS (Virual Reference Station) is located close to the rover, and the measurements are generated by correcting the geometrical distance to those of the master reference station. Since the unmodeled errors are generally proportional to the length of the baselines, the correction parameters are estimated by fitting a plane to the DD pseudorange errors of the CORS network. The DD positioning accuracy using 24 hours of C/A code measurements provides the RMS errors of 37 cm, 28 cm for latitudinal and longitudinal direction, respectively, and 76 cm for height. The accuracy of the horizontal components is within ${\pm}0.5m$ for about 90% of total epochs, and in particular the biases are significantly decreased to the level of 2-3 cm due to the network-based error modeling. Consequently, it is possible to consistently achieve a sub-meter level accuracy from the single-frequency pseudoranges using the VRS and double-differenced error modeling.

A DTC-PWM Control Scheme of PMSM based on an Approximate Voltage Function (근사 전압함수를 기반으로 하는 PMSM의 6-섹터방식의 DTC-PWM 제어 방식)

  • KWAK, YUNCHANG;LEE, DONG-HEE
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.39-40
    • /
    • 2013
  • 본 논문에서는 직접토크 제어에서 자속과 토크의 오차에 따라 결정된 전압벡터와 회전자 위치에 따른 실제 인가될 수 있는 d-q축 전압을 근사 전압함수로 근사화하여, 자속 및 토크오차와 전동기의 속도에 따라 듀티비를 결정하는 방식을 제안한다. 이러한 방식은 선택된 전압벡터가 일정한 상수 크기의 전압을 인가하는 것으로 가정된 기존의 직접토크 제어 방식에 비해 정밀한 전압 기준을 바탕으로 펄스폭의 듀티비를 결정함으로써, 동일한 스위칭 주파수 내에서 토크 및 자속오차의 크기를 감소 시킬 수 있는 장점이 있다.

  • PDF

THE IMPROVEMENT OF POSITION ACCURACY USING INVERTED DGPS (NVERTED DGPS를 이용한 위치 정밀도 향상)

  • 이상혁;최규홍;박종욱;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • IDGPS(Inverted Differential Global Positioning System) is one of technique improving the accuracy of GPS positioning and is mostly used for tracking an automatic vehicle. In the IDGPS, the user send it’s GPS position and related satellite information to dispatcher, and the corrections are made at the dispatcher to get corrected user position. IDGPS suffered correction degradation as the baseline become large. This problem is resolved using NIDGPS(Network IDGPS). As the experimental results are demonstrated, the improvement of position accuracy using IDGPS and NIDGPS is verified.

  • PDF

Location of Acoustic Emission Sources in a PSC Beam using Least Squares (최소제곱법에 의한 PSC보의 음향방출파원 위치결정)

  • Lee Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.271-279
    • /
    • 2006
  • Acoustic Emission (AE) technology is an effective nondestructive testing for continuous monitoring of defect formation and failures in structural materials. This paper presents a source location model using Acoustic Emission (AE) sensors in a Pre-Stressed Concrete (PSC) beam and the evaluation of the model was performed through lab experiments. 54 AE events were made on the surface of the 5m-PSC beam using a Schmidt Hammer and arrival times were measured with 7AE sensors. The source location f3r each event was estimated using least squares. The results were compared with actual positions and the RMSE (Root Mean Square Errors) was about 2cm.

Determination of Optimal Locations for Measuring Displacements to Adjust Cable Tension Forces of Cable-Stayed Bridges (사장교 시공 중 케이블 장력 보정을 위한 최적 변위계측 위치 결정)

  • Shin, Soobong;Lee, Jung-Yong;Kim, Jae-Cheon;Jung, Kil-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.129-136
    • /
    • 2009
  • The paper presents an algorithm of selecting optimal locations for measuring displacements(OLD) to adjust cable tension forces during the construction of cable-stayed bridges. The rank for optimal locations can be determined from the effective independence distribution vectors(EIDV) that are computed from the Fisher Information Matrices(FIM) formulated with the displacement sensitivities. To examine the efficiency and reliability of the proposed algorithm for determining OLD, a simulation study on a cable-stayed bridge has been carried out. The results using FIM formulated with displacements are compared with those using FIM with displacement sensitivities through the simulation study. The effects of measurement noise and error in cable length on the adjustment of cable tension forces are evaluated statistically by applying the Monte Carlo scheme.

Analysis of the GPS-derived Control Point Errors for Quality Assurance of 3D Digital Maps (3차원 수치지도 정확도 검증을 위한 GPS 기반 기준점 오차의 영향 분석)

  • Bae, Tae-Suk;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.153-160
    • /
    • 2010
  • It is necessary to determine accurate 3-dimensional coordinates of the building corner points that could be control or check points in order to verify the accuracy of 3D digital maps in the near future. The usual process of obtaining the coordinates of the building corner points is to set up the ground control points with a GPS and then to practice terrestrial survey such as distance or angle measurements. However, since an error in the ground control points can be propagated through the terrestrial survey into the final coordinates of the buildings, accurately should be considered as much as possible. The actual effect of the GPS-derived ground control point error on the estimates of the unknowns through the terrestrial survey is mathematically analyzed, and the simulation data is tested numerically. The error of the ground control points is tested in the cases of 1-4 cm for the horizontal components and 2-8 cm for the vertical component. The vertical component error is assigned twice the horizontal ones because of the characteristics of the GPS survey. The distance measurement is assumed for convenience and the precision of the estimated coordinates of the building corner points is almost linearly increased according to the errors of the ground control points. In addition, the final estimates themselves can vary by the simulated random errors depending on the precision of the survey instrument, but the precision of the estimates is almost independent of survey accuracy.

Three-Dimensional Modeling Using KOMPSAT-1 Strip Images (KOMPSAT-1 스트립영상의 3차원 모델링)

  • Yoo, Hwan-Hee;Kim, Uk-Nam;Kim, Dong-Kyoo;Jeong, Ju-Kwon
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.137-144
    • /
    • 2002
  • 본 연구에서는 KOMPSAT-1호 EOC 위성영상으로 구성한 스트립영상과 영상의 헤더 정보를 이용하여 3차원 위치결정 모델링을 수행하여 그 정확도를 평가하였다. 스트립영상은 동일한 패스를 촬영한 단영상들을 연속적으로 접합시켜 구성하였다. 이 방법은 접근가능지역에서 기준점으로 오차보정을 실시한 후 비접근지역으로 연결되는 스트립영상을 기준점 필요 없이 위치결정을 할 수 있는 방법으로 비접근지역에 대한 지형정보 취득에 효과적인 방법으로 판단하였다.

  • PDF

Analysis of Orbit Determination of the KARISMA Using Radar Tracking Data of a LEO Satellite (저궤도위성의 레이더 관측데이터를 이용한 KARISMA의 궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1016-1027
    • /
    • 2015
  • In this paper, a orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute) to verify the orbit determination performance of this system, in which radar tracking data of a space debris was used. The real radar tracking data were obtained from TIRA(Tracking & Imaging Radar) system operated by GSOC(German Space Operation Center) for the KITSAT-3 finished satellite. And orbit determination error was approximately 60m compared to that of the GSOC's orbit determination result from the same radar tracking data. However, those results were influenced due to the insufficient information on the radar tracking data, such as error correction. To verify and confirm it, the error analysis was demonstrated and first observation data arc which has huge observation error was rejected. In this result, the orbit determination error was reduced such as approximately 25m. Therefore, if there are some observation data information such as error correction data, it is expected to improve the orbit determination accuracy.