• Title/Summary/Keyword: 위성자료처리

Search Result 374, Processing Time 0.023 seconds

Development of a Remotely Sensed Image Processing/Analysis System : GeoPixel Ver. 1.0 (JAVA를 이용한 위성영상처리/분석 시스템 개발 : GeoPixel Ver. 1.0)

  • 안충현;신대혁
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.13-30
    • /
    • 1997
  • Recent improvements of satellite remote sensing sensors which are represented by hyperspectral imaging sensors and high spatial resolution sensors provide a large amount of data, typically several hundred megabytes per one scene. Moreover, increasing information exchange via internet and information super-highway requires the developments of more active service systems for processing and analysing of remote sensing data in order to provide value-added products. In this sense, an advanced satellite data processing system is being developed to achive high performance in computing speed and efficieney in processing a huge volume of data, and to make possible network computing and easy improving, upgrading and managing of systems. JAVA internet programming language provides several advantages for developing software such as object-oriented programming, multi-threading and robust memory managent. Using these features, a satellite data processing system named as GeoPixel has been developing using JAVA language. The GeoPixel adopted newly developed techniques including object-pipe connect method between each process and multi-threading structure. In other words, this system has characteristics such as independent operating platform and efficient data processing by handling a huge volume of remote sensing data with robustness. In the evaluation of data processing capability, the satisfactory results were shown in utilizing computer resources(CPU and Memory) and processing speeds.

위성정보 활용 현황 및 발전 전망

  • Yeom, Jong-Min;Kim, Yun-Su;Yun, Bo-Yeol;Cheon, Yong-Sik;Kim, Hak-Jeong
    • The Magazine of the IEIE
    • /
    • v.37 no.12
    • /
    • pp.144-153
    • /
    • 2010
  • 지금은 국내외 위성 영상자료의 증가가 예상되고 위성 정보 활용 관련 산업 및 시장에 대한 전망은 충분히 발전 가능성이 있다고 예측되고 있어, 이에 대한 대응 방안을 마련해야할 시점이다. 특히 이전의 단순 영상 제공에서 가공, 처리를 통한 부가 서비스에 대한 부분이 중요시 될 것으로 사료된다. 앞으로 우리가 나아가야 할 길은 국내 위성 정보 활용 시장 확대 및 국제적인 경쟁력을 갖추는 것이다. 이를 위해서는 무엇보다 위성정보 활용 범국가 활용체계 구축이 시급하며, 국가 컨트롤 타워를 통하여 위성정보 활용 중장기 계획을 수렴하여 체계적인 계획 실천이 필요하다. 또한 표준화된 위성정보 자료처리 및 배포 시스템 구축, 그리고 위성정보 활용의 활성화를 위한 인프라 구축에 많은 관심을 두어야한다. 하지만 무엇보다 세계 위성영상 상용화 시장에 경쟁력을 가지기 위해서는 핵심 및 융복합 활용 기술 개발, 국내 전문 인력/전문기업 양성 및 국제적 협력 강화가 중요하다. 최근 국내 위성개발 위상 강화로 인하여, IC 가입이 추진되고 있으며 이사회 회의를 통하여 회원기관으로 한국항공우주연구원이 동의를 받은 상태이다. 이는 대한한국 위성정보의 활용이 경제적인 측면에서 뿐만 아니라, 범지구적 문제해결에 이바지 할 수 있는 위성정보 공여국의 위치로 진입하였다는 점을 암시하는 것이라 할 수 있다.

  • PDF

Development of a Satellite Image Preprocessing System for Obtaining 3-D Positional Information -Focused on KOMPSAT and SPOT Imagery- (3차원 위치정보를 취득하기 위한 위성영상처리 시스템 개발 - KOMPSAT 및 SPOT영상을 중심으로 -)

  • 유환희;김동규;진경혁;우해인
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.291-300
    • /
    • 2001
  • In this paper, we developed a Satellite Image Processing System for obtaining 3-D positional information which is composed of five process modules. As a procedure of them, the Data Process module is the procedure that reads and processes the header file to generate data files. and then calculates orbital parameters and sensor attitudes for obtaining of 3-D positional information with them. The 3D Process module is to calculate 3-D positional information and the Dialog Process module is to correct the time of image frame center using the single image or stereo images for implementing the 3D Process module. We expect to obtain 3-D positional information with the header file and minimum GCPs(1∼2 points) using this system efficiently and economically in comparison with existing commercial software packages.

  • PDF

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.

EXTENDED KALMAN FILTERING OF SATELLITE DOPPLER TRACKING DATA AND IT'S APPLICATION TO ORBIT DETERMINATION PROBLEMS (확장칼만필터를 이용한 인공위성 도플러 추적자료의 처리와 궤도 결정)

  • 김동규;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.143-156
    • /
    • 1995
  • Using a directional antenna, the Doppler effect of satellites can be detected and the orbital elements can be obtained by the Extended Kalman Filter with the observed frequency shift data. We obtained the orbital elements of NOAA-11 by the application of the Extended Kalman Filter type algorithm to the Doppler shift data of NOAA-11d and discussed the accuracy and the credibility of this algorithm.

  • PDF

Current Development Status of Payload Data Handling Unit for Earth Observation Satellite (지구관측 위성용 탑재체자료처리장치 개발 동향)

  • Lee, Jong-Tae;Lee, Sang-Gyu;Yong, Sang-Soon;Yi, Ho-Sang;Lee, Seung-Kun;Song, Jin-Huan;Kwak, Sin-Ung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.90-101
    • /
    • 2011
  • In this article, we introduce the technologies and trend of technical evolution of Payload Data Handling Unit (PDHU) for Earth Observation Satellites. As well, we review the efforts for the Koreanization of PDHU so far, and conclude with some suggestions for future work.

  • PDF

Improvement of Satellite Image Value-Added Processing System and Performance Evaluation (위성영상 부가처리시스템(VAPS) 개선 및 성능평가)

  • Lee, Kwangjae;Kim, Eunseon;Moon, Jungye;Kim, Younsoo
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.174-183
    • /
    • 2014
  • The Value-Added Processing System(VAPS) was developed for post-processing the KOMPSAT imagery. Recently software version and hardware specification of VAPS were changed for improving the VAPS performance. The purpose of this study is to describe about the improvement of existing VAPS(ver.1.0) and systematically evaluate the performance of the improved VAPS(ver.2.0). To this end, test-bed areas in South and North Korea were selected and then image processing tests were conducted using KOMPSAT-2 and KOMPSAT-3 imagery in both areas. In conclusion, VAPS(ver.2.0) had an ability to generate the high level products like ortho images and mosaic images. Image processing time using the Graphic Processing Unit(GPU) on ver.2.0 was enhanced up to 10 times than ver.1.0.

Development of Korea Ocean Satellite Center (KOSC): System Design on Reception, Processing and Distribution of Geostationary Ocean Color Imager (GOCI) Data (해양위성센터 구축: 통신해양기상위성 해색센서(GOCI) 자료의 수신, 처리, 배포 시스템 설계)

  • Yang, Chan-Su;Cho, Seong-Ick;Han, Hee-Jeong;Yoon, Sok;Kwak, Ki-Yong;Yhn, Yu-Whan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • In KORDI (Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI (Geostationary Ocean Color Imager) instrument which is loaded on COMS (Communication, Ocean and Meteorological Satellite); it will be launched in 2008. Ansan (the headquarter of KORDI) has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified into antenna and RF. Antenna is designed to be $\phi$ 9m cassegrain antenna which has 19.35 G/T$(dB/^{\circ}K)$ at 1.67GHz. RF module is divided into LNA (low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem. The existing building is re-designed and arranged for the KOSC operation concept; computing room, board of electricity, data processing room, operation room. Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet. and it is also being considered constructing outer data distribution system as a web hosting service for offering received data to user less than an hour.

TEST AND PERFORMANCE ANALYSIS METHODS OF LOW EARTH ORBIT GPS RECEIVER (지구저궤도 GPS 수신기의 시험 및 성능 분석 방법)

  • Chung Dae-Won;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. Recently most of satellites use GPS receiver as navigation solution for finding satellite position. However, the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation. Post-processing concepts such as Precise Orbit Determination (POD) are recently applied to satellite data processing to improve satellite position accuracy. The POD uses raw measurement data instead of navigation solution of GPS receiver. The performance of raw measurement data depends on raw measurement data accuracy and tracking loop algorithm of GPS receiver. In this paper, a method for evaluating performance of raw measurement data is suggested. Test environment and procedure of the low earth orbit satellite acquiring for navigation solution of GPS receiver and navigation solution of POD are described. In addition, accuracy on navigation solution of GPS receiver, raw measurement data, and navigation solution of POD are analyzed. The proposed method can be applicable to general low earth orbit satellite.

Improvement of KOMPSAT Imagery Locational Accuracy Using Value-Added Processing System (부가처리시스템을 이용한 다목적실용위성 영상자료 위치정확도 개선)

  • LEE, Kwang-Jae;YUN, Hee-Cheon;KIM, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.68-80
    • /
    • 2015
  • To increase the utilization of the KOrea Multi-Purpose SATellite(KOMPSAT) series imagery being developed pursuant to the national space development program, high quality images with enhanced locational accuracy should be created through standardized post-processing processes. In the present study, using the Value-Added Processing System(VAPS) constructed for the post-processing of KOMPSAT imagery, location correction experiments were conducted using KOMPSAT-2 and -3 imagery from domestic and overseas regions. First, 50 pieces from each of KOMPSAT-2 imagery were selected from South Korean and North Korean regions, and modeling was conducted using GCP Chips. According to the results, the Root Mean Square Errors(RMSE) for South Korea and North Korea were 1.59 pixels and 2.04 pixels, respectively, and the locational accuracy of ortho mosaic imagery using check points were 1.33m(RMSE) and 1.90m(RMSE), respectively. Meanwhile, in the case of overseas regions for which GCP could not be easily obtained, the improvement of locational accuracy could be identified through image corrections using Open Street Map(OSM). The VAPS and reference materials used in the present study are expected to be very useful in constructing a precise image DB for entire global regions.