• Title/Summary/Keyword: 위상 분해

Search Result 339, Processing Time 0.028 seconds

Analysis of Hybrid Emulsion Surfaces by the Phase Lag Mapping Atomic Force Microscopy (위상지연 원자간력 현미경법에 의한 혼성 에멀젼 표면의 분석)

  • Han, Sang-Hoon;Kim, Jong-Min;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.381-385
    • /
    • 2006
  • We applied a new analyzing technique for the polyurethane acrylate hybrid emulsion sample composed of polyurethane resin and acrylate resin using the phase-lag mapping techniques of atomic force microscopy. For the analysis, we synthesized similarly sized pure polyurethane dispersion and acrylate emulsion particles, which were used for measuring the standard phase-lag intensities for each material. Based on these signal intensity, we could discriminate acryl particle in the polyurethane dispersion matrix with the resolution of a few tens of nanometers. Thus, the techniques show a new possibility in the analysis of the organic two-phase particles, and we believe the techniques are helpful to design organic particles.

Estimation of Excitation Force and Noise of Drum Washing Machine at Dehydration Condition using Phase Reference Spectrum (위상 기준 스펙트럼을 이용한 드럼 세탁기 탈수 행정시의 가진력 및 방사소음 예측)

  • Kim, Tae Hyeong;Jung, Byung Kyoo;Heo, So Jung;Jeong, Weui Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.617-623
    • /
    • 2013
  • Accurate prediction of the radiated noise is important to reduce the noise of the washing machine. It is also necessary to predict the excitation force accurately because excitation force can induce noise. In order to predict the excitation force acting on the washing machine, this paper conducts source identification method by use of phase reference spectrum. In this method, the transfer function between the cabinet and the motor through FEM and the measured response from the surface of the cabinet is used. The analysis of the radiation noise from the identified exciting force has been investigated. The comparison between the predicted SPL and the measured SPL at 1m apart from the front side of the washing machine showed good tendency.

Face Recognition Using a Phase Difference for Images (영상의 위상 차를 이용한 얼굴인식)

  • Kim, Seon-Jong;Koo, Tak-Mo;Sung, Hyo-Kyung;Choi, Heung-Moon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.81-87
    • /
    • 1998
  • This paper proposes an efficient face recognition system using phase difference between the face images. We use a Karhunen-Loeve transform for image compression and reconstruction, and obtain the phase difference by using normalized inner product of the two compressed images. The proposed system is rotation and light-invariant due to using the normalized phase difference, and somewhat shift-invariant due to applying the cosine function. The faster recognition than the conventional system and incremental training is possible in the proposed system. Simulations are conducted on the ORL images of 40 persons, in which each person has 10 facial images, and the result shows that the faster recognition than conventional recognizer using convolution network under the same recognition error rate of 8% does.

  • PDF

Analysis of the Digital Phase Tracking Technique for Fiber-Optic Gyroscope (광섬유 자이로스코프의 위상추적 신호처리 분석)

  • Yeh, Y.H.;Cho, S.M.;Kim, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.95-105
    • /
    • 1997
  • A new open-loop signal processing technique of digital phase tracking is known to have a Potential to solve the problems in the open-loop processor such as limited dynamic range, dependence on the optical intensity fluctuations, and dependence on gain fluctuations of signal path. But new problems with digital phase tracking must be solved before it can be a useful signal processing method. In this paper, barriers to the success of the digital phase tracking such as harmonics content, phase difference, amplitude variations of the phase modulation(PM) signal, bandwidth limit of the signal path, and the implementation of the mixer, are pointed out and their effects on the performance of the signal processor are analyzed to calculate the requirements of the signal processor for $1{\mu}rad$-grade FOG.

  • PDF

The Phase Space Analysis of 3D Vector Fields (3차원 벡터 필드의 위상 공간 분석)

  • Jung, Il-Hong;Kim, Yong Soo
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.909-916
    • /
    • 2015
  • This paper presents a method to display the 3D vector fields by analyzing phase space. This method is based on the connections between ordinary differential equations and the topology of vector fields. The phase space analysis should be geometric interpolation of an autonomous system of equation in the form of the phase space. Every solution of it system of equations corresponds not to a curve in a space, but the motion of a point along the curve. This analysis is the basis of this paper. This new method is required to decompose the hexahedral cell into five or six tetrahedral cells for 3D vector fields. The critical points can be easily found by solving a simple linear system for each tetrahedron. The tangent curves can be integrated by finding the intersection points of an integral curve traced out by the general solution of each tetrahedron and plane containing a face of the tetrahedron.

A Comparative Study on Dynamic Behavior of Soil Containers that Have Different Side Boundary Conditions (측면 경계 조건이 다른 토조들의 동적거동 비교에 관한 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Son, Su-Won;Na, Ho-Young;Son, Jeong-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.107-116
    • /
    • 2011
  • Rigid soil containers (or rigid boxes) are often used for 1g shaking table tests. The rigid boxes, however, do not accurately simulate the amplification of ground acceleration and phase difference of seismic motion in the model ground due to the confinement of shear deformation and the reflection of seismic wave at the box walls. Laminar soil containers (or laminar shear boxes) can simulate the free field motion at convincingly superior accuracy than the rigid ones. In this study, the soft ground is modeled for both types of boxes and is subjected to seismic loading using a 1g shaking table. The comparison of the results using the two types of soil containers illustrates that, in case of the rigid box, the ground acceleration shows non uniform distribution and the phase synchronization of input motion. Whereas, the dynamic behavior of the laminar shear box shows good agreement with the free field behaviors such as the amplification of ground acceleration and the occurrence of phase difference.

Systematic Error Correction in Dual-Rotating Quarter-Wave Plate Ellipsometry using Overestimated Optimization Method (최적화 기법을 이용한 두 개의 회전하는 사분파장판으로 구성된 타원편광분석기에서의 체계적인 오차 보정)

  • Kim, Dukhyeon;Cheong, Hai Du;Kim, Bongjin
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • We have studied and demonstrated general, systematic error-correction methods for a dual rotating quarter-wave plate ellipsometer. To estimate and correct 5 systematic error sources (three offset angles and two unexpected retarder phase delays), we used 11 of the 25 Fourier components of the ellipsometry signal obtained in the absence of an optical sample. Using these 11 Fourier components, we can determine the errors from the 5 sources with nonlinear optimization methods. We found systematic errors ${\epsilon}_3$, ${\epsilon}_4$, ${\epsilon}_5$) are more sensitive to the inverted Mueller matrix than retarder phase delay errors (${\epsilon}_1$, ${\epsilon}_2$) because of their small condition numbers. To correct these systematic errors we have found that error of any variety must be less than 0.05 rad. Finally, we can use the magnitudes of these errors to correct the Mueller matrix of optical components. From our experimental ellipsometry signals, we can measure phase delay and the rotational angular position of its fast axis for a half-wave plate.

A Tetrahedral Decomposition Method for Computing Tangent Curves of 3D Vector Fields (3차원 벡터필드 탄젠트 곡선 계산을 위한 사면체 분해 방법)

  • Jung, Il-Hong
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.575-581
    • /
    • 2015
  • This paper presents the development of certain highly efficient and accurate method for computing tangent curves for three-dimensional vector fields. Unlike conventional methods, such as Runge-Kutta method, for computing tangent curves which produce only approximations, the method developed herein produces exact values on the tangent curves based upon piecewise linear variation over a tetrahedral domain in 3D. This new method assumes that the vector field is piecewise linearly defined over a tetrahedron in 3D domain. It is also required to decompose the hexahedral cell into five or six tetrahedral cells for three-dimensional vector fields. The critical points can be easily found by solving a simple linear system for each tetrahedron. This method is to find exit points by producing a sequence of points on the curve with the computation of each subsequent point based on the previous. Because points on the tangent curves are calculated by the explicit solution for each tetrahedron, this new method provides correct topology in visualizing 3D vector fields.

Investigation of Performance Limitations of SCM/WDM Systems Using Optical DSB Modulation and 16 QAM Signals (광 이중 측파대 변조 방식과 16 QAM 신호를 이용한 부반송파/파장 분할 다중화 시스템의 성능 분석에 대한 연구)

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • In this paper, we investigate the performance limitations of SubCarrier Multiplexed(SCM) WDM systems using optical Double-Side Band(DSB) modulated 16 QAM signals. The Bit-Error Rate(BER) performance is evaluated under various optical transmission links including the effects of the dispersion and fiber nonlinearities such as SPM(Self-Phase Modulation) and XPM(cross-phase modulation). After simulation of SCM-WDM systems, the dominant factors determining the entire system performance are appeared to be the nonlinearity of MZ(Mach-Zehnder) modulator and the SCM channel spacing. The BER performance of subcarrier channels in the higher frequencies was degraded with the large dispersion effect only, however, the performance was improved a little with a combined effect of fiber dispersion and nonlinear effect when the hish fiber launching power was applied.