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3차원 벡터 필드의 위상 공간 분석

정일홍*, 김용수**

요 약 
본 논문에서는 위상 공간 분석을 통해 3D 벡터 필드를 표현하는 방법을 제안한다. 이 방법은 상미분 

방정식과 벡터 필드 위상과의 연결에 기초를 두고 있다. 위상 공간 분석은 위상 공간 형태의 자율 방정

식 시스템의 기하학적 보간법이 되어야 한다. 이 방정식 시스템의 모든 해는 공간에서의 곡선이 아니라 

곡선을 따라가는 점의 움직임과 일치한다. 이러한 분석은 이 논문의 기반이다.

새로운 방법은 3차원 벡터필드에서 육면체 셀을 5 또는 6개의 사면체 셀로 분해하는 것을 요구한다.

임계점은 각 사면체의 간단한 선형 시스템을 풀어서 간단하게 구할 수 있다. 각 사면체의 일반해에 의

해 그려지는 전체 곡선과 사면체의 한 면을 포함하는 평면과의 교차점을 계산함으로써 탄젠트 곡선은 

구해진다.

키워드 : 위상 공간, 벡터 필드, 일반해, 탄젠트 곡선

The Phase Space Analysis of 3D Vector Fields

Il-Hong Jung*, Yong Soo Kim**

Abstract 

This paper presents a method to display the 3D vector fields by analyzing phase space. This 

method is based on the connections between ordinary differential equations and the topology of 

vector fields. The phase space analysis should be geometric interpolation of an autonomous system 

of equation in the form of the phase space. Every solution of it system of equations corresponds 

not to a curve in a space, but the motion of a point along the curve. This analysis is the basis of 

this paper.

This new method is required to decompose the hexahedral cell into five or six tetrahedral cells 

for 3D vector fields. The critical points can be easily found by solving a simple linear system for 

each tetrahedron. The tangent curves can be integrated by finding the intersection points of an 

integral curve traced out by the general solution of each tetrahedron and plane containing a face 

of the tetrahedron.
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1. Introduction

The visualization of 3D vector fields is an

important scientific topic because today

research in Computational Fluid Dynamics is

almost impossible without visualization tools.

Computational Fluid Dynamics has widespread

applications ranging from oceanic, atmospheric,

and astronomical studies to properties of

metals under temperature change[1]. However,

3D vector fields are difficult to visualize. The

difficulty results from the incapacity of the
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human visual system to understand displays

containing a large number of vectors or

curves.

Topological concepts to visualize vector

fields ar very powerful. Topology[2][3][4][5] of

vector fields consists of critical points and

tangents curves connecting these critical

points. The power of the topological

visualization is that, given the critical points

in vector fields and the tangent curves

connecting them, one can infer the shape of

other tangent curves and hence to some

context the structure of the entire set of

vector fields. In the conventional topological

methods[3][4][5][6], computation of location of

critical points can be a rather formidable

problem. For example, in the case of

curvilinear girds, cells must be searched for

possible candidate cells and a nonlinear

system of equations must then be solved in

order to compute the critical points[3]. The

tangent curves are generally calculated using

numerical integration over some piecewise

interpolant such as Euler’s method or

Runge-Kutta type method, but these methods

produce only approximation to the tangent

curves[7].

Our new method is based on the connection

between ordinary differential equations and the

phase space of vector fields. The connections

between differential equations and topology of

vector fields were initially developed by

Poincare[8][9]. The most important aspects of

visualizing vector fields are how to find the

critical points and how to integrate the

tangent curves. To find the critical points, this

new method finds the functions of a velocity

vector for each tetrahedron.

We shall analyze a geometrical interpolation

of an autonomous system of equations in the

form of the phase space of the system[8][9].

This interpolation should be more correctly

kinematic interpolation, since every solution of

its system of equations corresponds not to a

curve in a space, but the motion of a point

along the curve. This analysis is the basis of

this research.

2. Related Works

2.1 3D Vector Fields Topology

The conventional topological methods are

based on critical point theory, which has been

widely used to examine solution of ordinary

differential equations[8]. They consist of a

collection of tangent curves, which separate

the flow into regions. Helman and Hesselink

[4][5][6] have developed 2D topology software

and Globus et al. [3] have developed a tool for

visualizing the topology for 3Dl vector fields

using critical point classification.

2.1.1 Computation of the Critical Point

Critical points are points where the

magnitude of a vector field vanishes. When

vector fields are represented over regular

grids, critical points can computed by trilinear

interpolation for 3Dl vector fields. In the case

of curvilinear grids, cell must be searched for

possible candidate cells and the simultaneous

nonlinear equations must be solved[3]. This

normally requires the use of some numerical

method, such as Newton’s iteration which

could possibly fail to converge, or converge to

a point which is actually not a critical point

[10].

2.1.2 Classification of the Critical Points

If we consider the Taylor’s expansion of the

fields in the neighborhood of a critical point,

then the vector field’s local behavior is fully

determined by the first order partial

derivatives – that is, Jacobian matrix – of

the field,
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The eigenvalues and eigenvectors of this

matrix determine the local behavior of vector

fields around a critical point.

On the basis of the eigenvalues of the

Jacobian matrix, Glubus et al.[3] classify a

critical point as a node, saddle, or spiral

saddle for 3D vector fields. (Figure 1) shows

the classification of 3D critical points.

(Figure 1) Classification of 3D critical points

2.1.3. Computation of the Tangent

Curves

The tangent curve of a vector field is a

curve for which the tangent vector at any

point along the curve is parallel to the vector

field at that point. In conventional topological

methods, tangent curves are generally

computed using numerical methods such as

Euler’s or 4th order Runge-Kutta methods[11]

for solving vector-valued initial value

problems. Saddle points can be used as the

starting points for the tangent curve and the

eigenvectors can be used as the starting

directions. The end points of the tangent

curve are either critical points or points on the

boundary of the domain. Because these

numerical methods produce only

approximations to the tangent curves, some

tangent curves may miss a critical point. To

solve this problem, when a tangent curve

comes very close to a critical point, we simply

attach the tangent curve thereto[12][13].

3. The Phase Space Analysis

3.1 Phase Plane Analysis

We consider the linear autonomous system

 



  

 



  (3.1)

where    and  are constants. The

coefficient matrix of constants is nonsingular

unless its determinant is   . The

system always has a critical point at the

origin (0,0) and it has no other singularity.

We look for solutions of equations (3.1) of

the form   ,   . Substituting for x

and y in equations (3.1), we obtain

  

    (3.2)

In order for these two linear homogeneous

equations to have a nontrivial solution, it is

necessary for the determinant of the

coefficients to be zero. Therefore r must be a

root of the characteristic equation

     . (3.3)

The roots  and  of equation (3.3) are

the eigenvalues of the coefficient matrix of the

system (3.1).

Five cases must be considered depending on

whether the roots of equation (3.3) have the

zero or no nonzero and real roots or complex

roots. The five cases are as follows:

Case 1 : ≠ ≠ ≠

Case 2 :    ≠

Case 3 :   

Case 4 :   ≠

Case 5 : ±≠
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(Figure 2) shows the regions of the above

five cases. This figure is generated by

varying the value of the vector field at one

vertex of the triangle that is marked with

white circle and fixing the values of the

vector field at the other two vertices, as

illustrated by the arrows drawn at these

vertices. The interior to the parabolic bounded

region is Case 5. The boundary is Case 4,

except for the degenerate subcase of Case 3

which is marked by a black box on the

boundary. Case 2 consists of a line tangent at

this point. The remaining region is Case 1.

Not all cases occur with equal frequency.

Case 1 and 5 are major cases, while Case 2

and 4 occur much less than Case1 and 5.

Case 3 occurs rarely.  

(Figure 2) The five case regions

3.2 Phase Space Analysis

Consider the linear autonomous system

 



  

 



 

  


  (3.4)

where         and  are

constants. We look for solutions of equations

(3.4) of the form   ,   ,   .

Substituting for x, y, and z in equations (3.4),

we obtain

  

  

   . (3.5)

We introduce the characteristic equation

   
       

       (3.6)

with roots , , and . The roots , ,

and  of equation (3.6) are the eigenvalues of

the coefficient matrix of the system (3.3).

Here the characteristic equation is a real

cubic equation. Such an equation can have

either three real roots or one real and two

complex roots, and many different cases occur,

depending on the arrangement of th roots ,

, and . Examining the nonzero multiple

roots we find that 4 major cases are possible,

as well as 5 degenerate cases which have at

least one zero eigenvalues. The nine separate

cases follow.

Case 1 : ≠ ≠ ≠ ≠

Case 2 : ≠ ≠  ≠

Case 3 :    ≠

Case 4 :  ≠±≠

Case 5 :   ≠ ≠ ≠

Case 6 :     ≠

Case 7 :    

Case 8 :     ≠

Case 9 :  ±≠

(Figure 3) shows the regions of the nine

cases. The regions of these degenerate five
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cases are represented on a plane which has at

least one zero eigenvalue. This plane is called

the zero eigenvalue plane. The regions of the

five degenerate cases on this plane are

analogous to the five case regions in the 2D

situation as shown in (Figure 2). There exists

a surface which contains at least two equal

eigenvalues. We call this surface the equal

eigenvalue surface. The interior to the surface

bounded region is Case 4, except for the

degenerate subcase of Case 9 on the zero

eigenvalue plane. The surface boundary is

Case 2, except for the degenerate subcases of

Case 7 and 8 on the zero eigenvalue plane

and for Case 3 indicated by the curve on the

equal eigenvalue surface. The exterior to the

surface bounded region is Case 1, except for

the degenerate subcases of Case 5 and 6 on

the zero eigenvalue plane. This figure

represents the three-dimensional analog of

(Figure 2).

(Figure 3) The nine case regions

Let us assume that the roots , , and 

of equation (3.6) are unequal real roots. We

can represent the general solution of equation

(3.3) in the following form:

  
 


 

,

  
 

 
,

  
 

 
,

where  ,  , and 

are three eigenvectors for , , and .

If three unequal real roots are opposite sign,

we classify the critical point as a

saddle/saddle/node point. If these roots are

same sign, this type of critical point is called

a nodal point. (Figure 4) shows the trajectory

of the tangent curves in case of three unequal

real roots

(Figure 4) The trajectory of the tangent curves

in case of three unequal real roots

(a) Saddle/saddle//node point (b) nodal point

In case of a real root and complex roots, let

us first assume that complex roots are ±,

and real root is . The general solution of

equation (3.3) has form

  
 

 
,

  
 

 
,

  
 

 
.

If the signs of real root and real part of the

complex roos are different, we classify the

critical point as a spiral saddle point. If these

signs are same, this type of critical point is

called a spiral point. (Figure 5) shows the

trajectory of the tangent curves in case of a

real root and complex roots.
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(Figure 5) The trajectory of the tangent curves

in case of a real root and complex roots.

(a) spiral saddle point  (b) spiral point

3.3 Tetrahedral Decomposition Method

This new method creates the three

dimensional vector field topology by the

following algorithm:

1) Decompose hexahedral grid cell into five or

six tetrahedral cells.

2) Calculate the coefficient of the linear

autonomous system for each tetrahedron.

3) Calculate the coordinate value of the critical

points.

4) Classify the critical points.

5) Calculate the eigenvalues of each

tetrahedron.

6) Classify each tetrahedron.

7) Compute the general solution for each

tetrahedron.

8) Fine the intersection point where the curve,

that is traced out by general solution of the

tetrahedron, intersects the plane containing a

face of a tetrahedron.

9) Integrate the curve

10) Display the three dimensional vector fields

topology

4. Performance Evaluation

We present the implementation of the new

method for 3D flow data around the an

automobile. The 3D data set consists of the

coordinate value and the velocity vector value

of each grid point on a ×× curvilinear

grid system.

To validation our new method, the method

was implemented on a test function.

Furthermore, the two conventional methods –

Euler’s and 4th Order Runge-Kutta method –

were also implemented in order to compare

our new method’s results. The velocity vector

of the test function produces a flow which

rotates the z axis and spiral inwards. The test

function is as follows:

       

This function generates the velocity vector

values of each grid points in a rectangular

Cartesian grid ×× cells.

A comparison of our new method with the

conventional methods is shown in (Figure 6).

There are no visual differences between the

new method and conventional methods, as

shown (Figure 6).

(Figure 6) Validation of proposed method with

conventional method

(a) proposed method

(b) Runge-Kutta method   (c) Euler’s method

(Figure 7) displays the topological graphs

around an automobile for 3D flow data.
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(Figure 7) 3D vector field topological curves

around an automobile

(a) Top View

(b) Bottom View

5. Conclusion

The new method for compute the tangent

curves using the phase space analysis has

been presented. The new method is based on

the connections between ordinary differential

equations and the phase space of vector fields.

This new method uses functions of the

velocity vector for each tetrahedron to find the

critical points, while the conventional methods

use th bisection method to find the critical

points. Thus this new method would reduce

the numerical error for finding critical points.

Also, this new method has controllable and

guaranteed accuracy.

The problem of this research is to find the

intersection point of the integral curve, traced

out by the general solution of each

tetrahedron, and the plane containing a face of

the tetrahedron. It is difficult to find exact an

intersection point because of numerical error.

Further research topics will be development of

a more efficient root finding algorithm and

extension to separating surface.
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