• Title/Summary/Keyword: 위상 배열 안테나

Search Result 311, Processing Time 0.026 seconds

Effect of a Finite Substrate Size on the Radiation Characteristics of Two-Element Linear E-plane Array Antennas (유한한 기판 크기가 2소자 E-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.95-110
    • /
    • 2012
  • The effect of a finite substrate size on the radiation characteristics of a two-element linear E-plane array antenna using microstrip patch antennas is investigated. The average active element pattern characteristics of two-element E-plane array antennas printed on different dielectric constant substrates with various substrate sizes and element spacings are analyzed. Using the average active element pattern, the radiation pattern characteristics of the array antenna versus scan angle is analyzed. The simulation results show that the diffracted fields of surface waves from substrate edges have a significant effect on the radiation characteristics of a 2-element E-plane array antenna. The distance between the center of patch antenna and the substrate edges on the E-plane for the enhancement of radiation characteristics of the array antenna is about $0.35{\lambda}_0$.

Sequentially Rotated Array Microstrip Antenna (순차 회전 배열 마이크로스트립 안테나)

  • Han, Jeonng-Se;Lee, Hyun-Sung;Seo, Dong-Kug;Park, Byoung-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1005-1014
    • /
    • 2007
  • In this paper, The four types SRA(Sequential Rotated Array) antennas has been analyzed. Those are consisted of a 4-elements SRA, a 8-elements SRA, the $2{\times}2$ planer array SRA and the triple (4+8+4)-elements SRA. These LHCP SRA antennas are used a probe feeding multi-layer truncated microstrip antenna whose center frequency is 11.85 CHz. The cooperated feeding circuits are designed for feeding to each elements with equal amplitude and regular phase. Comparing with the each simulation results and experiment results of this 4-type SRA antennas, the triple (4+8+4)-elements SRA showed the most electrical characteristics in the degree of integration, high gain and low cross polarization.

Analysis of Direction Finding Accuracy for Amplitude-Phase Comparison and Correlative Interferometer Method (진폭-위상 복합비교 기법과 상관형 위상비교 기법의 방향탐지 정확도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.195-201
    • /
    • 2016
  • In this paper, we present the direction finding accuracy of correlative interferometer method and amplitude-phase comparison method. Spiral antennas are used for amplitude-phase comparison method and blade antennas are used for correlative interferometer method. Those are made for uniform circular array (UCA) direction finding antenna systems. We simulate the accuracy of azimuth angle with 3 antennas UCA when SNR is 20 dB and baseline is 0.5 wave length. Correlative interferometer method has better accuracy than amplitude-phase comparison method.

Analysis of Sea Clutter Removal Capability in a Weather Radar Based on a Vertical Phased Array Antenna (수직 위상 배열 안테나 기반 기상 레이다에서의 해수면 클러터 제거 성능 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.155-161
    • /
    • 2018
  • Many short range weather radars with the low elevation search capability are needed for analysis and prediction of unusual weather changes or rainfall phenomena which occurs regionally. However, due to the characteristics of low elevation electromagnetic wave beam, it is highly probable that the received weather signals of these radars are contaminated by the ground and sea clutter. Since most of ground clutter appears around the very narrow low Doppler frequency region, it is somewhat easy to separate. However, the sea clutter removal is very difficult since it can occupy the broad Doppler frequency region according to weather conditions. Therefore, in this paper, the sea clutter removal capability is analyzed for a phased array weather radar which use vertical array elements for electronic elevation beam steering. Also, it is shown that the sea clutter removal can be achieved appropriately using the receiver beam forming technology in a phased array antenna.

Development of Polarization-Controllable Active Phased Array Antenna for Receiving Satellite Broadcasting (편파가변 위성 방송 수신용 능동 위상 배열 안테나 개발)

  • Choi, Jin-Young;Lee, Ho-Seon;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.325-335
    • /
    • 2018
  • We herein present a study on the active phased array antenna for receiving satellite broadcasting that can electrically align its polarization to that of target transmitters in its moving condition or in the Skew angle arrangement of the broadcasting satellite receiver. Hence, we have developed an active phased array structure composed of the self-developed Vivaldi antenna and multifunction core (MFC) chip, receiving RF front end module, and control units. In particular, the new Vivaldi antenna designed in the Ku-band of 10.7 - 14.5 GHz to receive one desired polarization mode such as the horizontal or vertical by means of an MFC chip and other control units that can control the amplitude and phase of each antenna element. The test results verified that cross-polarization property is 20 dB or higher and the primary beam can be scanned clearly at approximately ${\pm}60^{\circ}$.

Study on the Beam Pattern Compensation with Planar Active Phased Array Antenna (평면형 능동위상 배열안테나 빔 패턴 보상에 관한 연구)

  • Chon, Sang-Mi;Na, Hyung-Ki;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.217-222
    • /
    • 2014
  • This paper discusses about the beam pattern distortion caused by the failures of some antenna modules in the active array antenna and analyses the possibility of improvement through applying the beam pattern compensation method previously studied. The beam pattern distortion which is mostly represented as an increase of the sidelobe level, can be suppressed through re-synthesizing each module's magnitude and phase. This method was applied to the prototype of active array antenna system, and the results of antenna pattern distortion and compensation were analyzed and measured in the Near Field Chamber. Array failures are generally divided into random TR module failures and TRU(TR Unit: combination of TR modules, Beam Computation module, Power supply module) failures. The results of beam pattern compensation were analyzed in each failure and compared to the results of the simulation. The beam pattern compensation results applied to the real active antenna array system showed the similar to the simulation results. Consequently, it was verified the beam pattern could be compensated with the magnitude and phase adjustment of other normal antenna modules.

Subarray Structure Optimization Algorithm for Active Phased Array Antenna Using Recursive Element Exchanging Method (재귀적 소자 교환 방식을 이용한 능동위상배열안테나 부배열 구조 최적화 알고리즘)

  • Chae, Heeduck;Joo, Joung Myoung;Yu, Je-Woo;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.665-675
    • /
    • 2016
  • With the development of active phased array radar technology in recent years, active phased array antennas, which digitally combine signals received from subarray units using dozens of digital receiver, have been developed. The beam characteristics are greatly affected by the shape of the subarray structure as well as the weight of subarray in digital beamforming. So in this paper, the method to generate subarray structures by using recursive element exchanging method and the method to optimize subarray structures that can minimize sidelobes of operating beams are proposed. Additionally it presents the result to find the optimized subarray structure to minimize the maximum sidelobe of monopulse beam and pencil multi-beam respectively or simultaneously which are commonly used for digital beamforming by applying the algorithm propsed in this paper.

Compensation Algorithm of Beamforming Error for Wideband Conformal Array Antenna (광대역 컨포멀 위상 배열 안테나의 빔형성 열화 보상 알고리즘)

  • Yoon, Ho-Joon;Lee, Kang-In;Nam, Sang-Wook;Chung, Young-Seek;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.478-486
    • /
    • 2017
  • In this paper, we propose an algorithm for the wideband beamforming in a conformal phased array antenna by compensating the errors. For the wideband beamforming, we used the True Time Delay(TTD), which was fabricated on the RF circuit board to obtain long delay lines. Beamforming errors in the conformal array antenna are the mutual coupling between the array elements, the dispersive error in the TTD circuit, and the quantization error by the digital control. We apply the compensation algorithm to the conformal phased array antenna of wideband 2~4 GHz, and verify the usefulness by comparing the results with the experiment results.

A C-Band CMOS Bi-Directional T/R Chipset for Phased Array Antenna (위상 배열 안테나를 위한 C-대역 CMOS 양방향 T/R 칩셋)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.571-575
    • /
    • 2017
  • This paper presents a C-band bi-directional T/R chipset in $0.13{\mu}m$ TSMC CMOS technology for phased array antenna. The T/R chipset, which is a key component of phased array antenna, consists of a 6 bit phase shifter, a 6 bit step attenuator, and three bi-directional gain amplifiers. The phase shifter is controlled up to $354^{\circ}$ with $5.625^{\circ}$ phase step for precise beam steering. The step attenuator is also controlled up to 31.5 dB with 0.5 dB attenuation step for the side lobe level rejection. The LDO(Low Drop Output) regulator for stable 1.2 V DC power and the SPI(Serial Peripheral Interface) for digital control are integrated in the chipset. The chip size is $2.5{\times}1.5mm^2$ including pads.

Effect of Finite Substrate Size on the Radiation Characteristics of H-plane Linear Array Antennas (유한한 기판 크기가 H-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-49
    • /
    • 2013
  • The effect of the finite substrate size on the radiation characteristics of H-plane linear microstrip array antennas is investigated. The radiation characteristics versus scan angle are systematically analyzed for 5-element H-plane linear array antennas with various substrate sizes and element spacings for the substrates with different dielectric constants. The distance between the antenna center and the substrate edge on the E-plane for the enhancement of the radiation characteristics of the array antenna is presented.