• Title/Summary/Keyword: 위상 도플러 입자 분석기

Search Result 48, Processing Time 0.034 seconds

The Effect of Property of Emulsified Fuel and Injection Pressure on the Spray Characteristics for Super-Critical-Pressure Burner (초임계압 보일러용 유화연료의 물성치와 분사압력이 분무특성에 미치는 효과)

  • Lee, I.S.;Jung, J.W.;Cha, K.J.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2002
  • The purpose of this study is to investigate the effect of the volume fraction of water and injection pressure on the spray characteristics of water/oil emulsified fuel injected from the pressure swirl atomizer. The mixture of light oil and water by using impeller mixer was performed. The spray characteristics such as SMD and velocity were measured using PDPA. The injection pressures were 7.5, 100, 200 and $300kgt/cm^2$ and volume fractions of water in emulsified fuel were 0, 10, 20 and 30%, respectively. The measurement sections were at 30, 60 and 90mm from injection nozzle tip. SMD and velocity of emulsified fuel were larger gradually by increasing the volume fraction of water in emulsified fuel. The spray angle was decreased and axial velocity was increased with increase in water content. It was found that the relative SMD ratio was increased more greatly than the relative axial velocity ratio in super critical pressure. The relative SMD ratio was increased and the relative axial velocity ratio was decreased with increase injection pressure at spray downstream.

  • PDF

Effect of the Swirler Angle and Aspect Ratio of Nozzle on the Mean Velocity and SMD of Twin Sprays (노즐의 스월러각과 형상비가 이중분무의 평균속도와 입경의 크기에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Choi, Gyoung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1459-1466
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single and twin spray. The characteristics of sprays have been investigated by measuring the spray angle, droplet size and velocity. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber, but for the twin spray, the axial velocity and SMD were not influenced significantly by the changing the aspect ratio of swirl chamber. The effect of swirler angle on the spray characteristics was greater than the aspect ratio of swirl chamber for single spray. The nozzle pitch was one of the important factors affecting the spray characteristics of twin spray.

Effect of Internal Geometry and Swirler Vane Angle of Nozzle on Spray Characteristics with Distance from Nozzle Tip (노즐의 내부형상 및 스월러 베인각의 변화가 선단거리에 따른 분무특성에 미치는 영향)

  • Jeong, H.C.;Choi, G.M.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • The purpose of this study is to investigate the effect of swirler vane angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single spray. The characteristics of sprat's have been investigated by measuring the spray angle, droplet size and velocity Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler vane angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber The effect of vane angle un the spray characteristics was greater than the aspect ratio of swirl chamber for single spray.

  • PDF

The Effect of Injection Angle and Pressure on Etch of Invar Plate Using Industrial Etch-Nozzle (산업용 에칭노즐을 이용한 Invar합금판의 식각에 분사각과 압력이 미치는 영향)

  • Jeong Heung-Cheol;Kim Dong-Wook;Choi Gyung-Min;Kim Duck-Jool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.47-53
    • /
    • 2006
  • The purpose of this study was to investigate the significant characteristics in spray of industrial etch-nozzle for the design of process. The experiment was carried out with different spray pressure and industrial nozzle in wet etch. The characteristics of liquid spray, such as axial velocity and sauter mean diameter measurements were obtained by PDA. And impact force was calculated from spray characteristics. It was found that the fluid with higher spray pressure resulted in the smaller SMD and the higher droplet velocity and impact force. The depth of etch was increased in case of high spray pressure. In the case of injection angle oscillated between $20^{\circ}$, the result indicated constant effect of etch. The correlation between the spray characteristics and etch ones were analyzed. The depth of etch had good positive correlation with axial velocity and impact force. The result clearly shows that the characteristics in wet etch are strongly related to the spray characteristics with process.

On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet (2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동)

  • Kim Kyu Chul;Namkung Jung Hwan;Lee Sang Jin;Rho Byung Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF

Spray Characteristics of the Injector for the APU Gas Tubine Engine at Airplane Operating Conditions (항공기 작동조건에 따른 APU 가스터빈엔진 연료노즐의 분무특성)

  • Choi, Chea-Hong;Choi, Seong-Man;Lim, Byeong-Jun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • Spray characteristics for APU gas turbine engine are investigated. In the test, four flight conditions such as sea level idle, sea level max power, 20,000 feet idle, 20,000 feet max power are used as spray experimental conditions. Spray visualization was performed by using ND-YAG laser bean PDPA(Phase Doppler Particle Analyzer) was used for measuring the particle diameter and velocity from 20 mm to 100 mm from discharge orifice. From the test result, SMD is $90{\sim}95\;{\mu}m$ 맛 20,000 ft idle condition and SMD is $60{\sim}75\;{\mu}m$ at sea level idle condition. Also SMD is $55{\sim}65\;{\mu}m$ at 20,000 ft max power condition and SMD is $30{\sim}70\;{\mu}m$ at sea level max power condition. In the case of 20,000 ft idle condition, combustion instability could be occurred due to the higher drop diameter. Therefore it is necessary to decrease the droplet diameter in the high altitude condition.

Experimental Study on the Characteristics of Microbubbles Generated by an Effervescent Tablet in Water (수중 내 발포성 정제로부터 생성된 미세기포 특성에 관한 실험적 연구)

  • Myeong, Jaewon;Maeng, Juyoung;Kim, Young Jun;Cho, Kyungmin;Lee, Woonghee;Kim, Sungho;Park, Youngchul;Sohn, Youngku;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.84-91
    • /
    • 2021
  • Effervescent tablets generate gas bubbles when chemical reaction occurs between water and tablets. Most of previous studies have been focused on pharmaceutical characteristics of tablets. However, for their applications in disinfectants, cleaners, and pesticides, physical characteristics of bubbles released from the effervescent tablets when they are in water are important. In this study, we experimentally investigated the characteristics of microbubbles generated by an effervescent tablet made of sodium bicarbonate and tartaric acid using PDPA and high-speed camera. Microbubbles were generated using different weights of effervescent tablet as well as in different water temperature. The experimental study shows increase in reaction time, bubble concentration and rise velocity as the weight of effervescent tablet increases from 1 to 20 g. The decrease in average bubble diameter was observed when the temperature of water increased from 25 to 45 ℃. Further, reaction time varies inversely with increase in water temperature, while bubble rise velocity is directly proportional to increase in water temperature. Effervescent table continuously generates the bubble with approximately constant diameter (235 ㎛) in the water. However, bubble concentration and bubble rise velocity decreased over time.

Study on the Atomization Characteristics of a Counter-swirling Two-phase Atomizer with Variations of Swirl angle (역선회 이류체 미립화기의 선회각 변화에 따른 미립화 특성연구)

  • Kim, N.H.;Lee, S.G.;Ha, M.H.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.125-130
    • /
    • 2001
  • Experimental and analytical researches have been conducted on the twin-fluid atomizers for better droplet breakup during the past decades. But, the studies on the disintegration mechanism still present a great challenge to understand the drop behavior and breakup structure. In an effort to describe the aerodynamic behavior of the sprays issuing from the internal mixing counter-swirling nozzle, the spatial distribution of axial (U) radial (V) and tangential (W) components of droplet velocities are investigated across the radial distance at several axial locations of Z=30, 50, 80, 120 and 170mm, respectively. Experiments were conducted for the liquid flow rates which was kept constant at 7.95 g/s and the air injection pressures were varied from 20 kPa to 140 kPa. Counter-swirling internal mixing nozzles manufactured at angles of $15^{\circ},\;30^{\circ},\;45^{\circ}$ and $60^{\circ}$ the central axis with axi-symmetric tangential-drilled holes was considered. The distributions of velocities and turbulence intensities are comparatively analyzed. PDPA is installed to specify spray flows, which have been conducted along the axial downstream distance from the nozzle exit. Ten thousand of sampling data was collected at each point with time limits of 30 second. 3-D automatic traversing system is used to control the exact measurement. It is observed that the sprays with all swirl angle have the maximum SMD for on air injection pressure of 20 kPa and 140 kPa with centerline, respectively. The nozzle with swirl angle of $60^{\circ}$ has vest performance.

  • PDF