• 제목/요약/키워드: 웹기반 학습

검색결과 1,278건 처리시간 0.033초

모바일 환경에서의 Sage-Math의 개발과 선형대수학에서의 활용 (Development of Mobile Sage-math and its use in Linear Algebra)

  • 고래영;김덕선;박진영;이상구
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제23권4호
    • /
    • pp.1023-1041
    • /
    • 2009
  • ICT 수학교육은 21세기 수학교육의 중요한 한 부분으로 자리매김 해 오고 있다. 국내 수학교육계에서도 이에 관한 다양한 연구가 지난 10여 년 간 활발하게 진행되어 왔으나 대학 수학교육에 사용되는 대부분의 공학적 도구들은 외국제품의 수입에 의존하고 있다. 중등과정에서의 ICT 수학교육도 특히 공학적 도구 부분은 어느 나라의 도구를 사용하느냐의 문제 때문에 실질적으로 교과과정에 반영되는 부분은 미뤄져왔다. 그러나 2008년 ICME11에서 소개된 공학적 도구 Sage-Hath는 훌륭한 대안을 제시한다. 본 연구에서는 최근에 개발된 Sage-Math를 한국의 웹기반 ICT 수학교육, 특히 선형대수학의 교수-학습 모델에 적용한 사례를 소개한다. 우리는 Sage-Math의 한글버전을 개발하고 다양한 예를 제시하며, 한국의 모바일 환경에 적합한 Sage-Math를 활용하는 Mobile Service 모듈을 개발한 내용과 관련 웹사이트를 소개한다.

  • PDF

시각장애인의 라이프 사이클을 지원하는 인공지능 웨어러블 플랫폼 (Artificial intelligence wearable platform that supports the life cycle of the visually impaired)

  • 박시웅;김정은;강현서;박형준
    • Journal of Platform Technology
    • /
    • 제8권4호
    • /
    • pp.20-28
    • /
    • 2020
  • 본 논문에서는 시각장애인의 라이프 사이클을 사전에 학습하여 시각장애인의 자립생활을 돕는 적정기술로 음성인식 기반 스마트 웨어러블 디바이스, 스마트 기기 및 웹 AI서버를 포함하는 음성, 사물 및 문자 인식 플랫폼을 제안하였다. 시각장애인용 웨어러블 기기는 착용편의성과 사물인식기능 효율을 높이기 위해 리버스 넥밴드 구조로 설계하여 제작하였으며, 웨어러블 기기에 부착된 고감도 소형 마이크와 스피커는 웨어러블 기기와 연동된 스마트기기의 앱으로 구성된 음성인식 인터페이스 기능을 지원하도록 구성하였다. 음성, 사물 및 광학문자 인식 서비스는 웹 AI 서버에서 오픈소스 및 구글 API를 활용하였고, 서비스 플랫폼의 음성, 사물 및 광학문자 인식 정밀도는 실험을 통하여 평균 90%이상 달성하였음을 확인하였다.

  • PDF

대학 교육의 메타버스 활용 현황 및 도입 전략에 대한 연구: 단계별 메타버스 도입 프레임워크 개발을 바탕으로 (A Study on Metaverse Utilization and Introduction Strategies in College Education: Based on Step-by-step Metaverse Introduction Framework)

  • 손영진;박민정;채상미
    • 지식경영연구
    • /
    • 제24권1호
    • /
    • pp.1-29
    • /
    • 2023
  • 코로나19 팬데믹으로 인한 사회적 거리두기의 일상화는 전 산업에 걸친 디지털 전환(Digital Transformation)을 가속화하였고 교육 분야에서도 IT 기술과 교육 서비스가 융합된 에듀테크(Edutech)가 확산되며 대학 교육에서도 변화를 가져왔다. 대학에서의 비대면 온라인 강의는 오프라인 학습의 병행 또는 보조적 수단이었으나 코로나19 팬데믹 이후 확산된 비대면 온라인 동영상 수업은 학습자와의 상호작용 부재, 학습자의 학업 이해도 저하 등의 한계를 보였고 대안으로 실시간 온라인 강의가 병행되었으나 상호작용 한계를 해결하지 못하고 기존 온라인 교육의 장점인 시공간 제한 없는 학습마저 없애는 문제가 발생하였다. 또한 학생들의 대학내 활동 참여 기회 감소에 따른 경험 부재로 인한 사회화 능력 감소가 우려되나 Zoom 과 같은 2차원 디지털 환경의 웹 회의 플랫폼을 사용한 온라인 활동은 학생들의 사회활동에 충분히 기여하지 못하였다. 이와 같은 한계를 극복하고자 하는 방법으로 '메타버스'가 주목받기 시작하였다. 메타버스는 아바타를 사용하는 3차원으로 구성되는 가상세계이나 상호작용, 사회적, 경제적 활동과 같은 실생활을 구현한 기술적 특징을 가져 온라인 교육의 한계 및 의사소통 한계 문제를 해결하는 학습 공간, 비교과 활동 지원 플랫폼으로 사용되기 시작하고 있다. 메타버스를 이용한 대학 교육의 실제 적용을 위해 도입 전략의 마련이 필요한 시점으로 이를 위해 본 연구에서는 첫째, 메타버스의 개념, 특징, 서비스 유형 등 메타버스와 관련된 전반적인 선행연구와 메타버스 적용사례를 고찰하고 둘째, 기술수명주기 모델과 혁신 기술 확산 이론을 바탕으로 한 메타버스 도입 프레임워크를 구축하고 단계적 도입 전략 및 주 사용층에 따른 특화된 도입 방안을 수립하여 시나리오로 제시하였다. 이를 통해 신기술 도입의 이론적 배경, 메타버스 연구의 확산 뿐 아니라 효율적 도입 전략 형성과 연계 서비스 모델 기초 제공, 대학의 부가가치 창출 전략을 제공할 수 있는 실무적 기반을 제시한다.

얼굴 검출 및 인식 기술을 이용한 실시간 전자 출결 시스템 (A Real-time Electronic Attendance-absence Recording System using Face Detection and Face Recognition)

  • 정필성;조양현
    • 한국정보통신학회논문지
    • /
    • 제20권8호
    • /
    • pp.1524-1530
    • /
    • 2016
  • 최근 스마트 기기를 이용한 전자 출결 시스템에 대한 연구가 활발히 진행되고 있다. 전자 출결 시스템을 이용하여 교수는 실시간으로 학생들의 출결 처리와 출석 기록을 관리할 수 있다. 본 논문에서는 기존의 자동식별 및 데이터 획득(AIDC, Automatic Identification and Data Capture) 기반의 전자 출결 시스템의 한계점인 공간적, 시간적, 비용적 문제점을 해결할 수 있는 전자 출결 시스템을 제안하였다. 제안하는 시스템은 웹 서버로 동작하며 HTML5(Hyper Text Markup Language ver.5) 기반으로 작성된 출결 관리 페이지에 개인이 가진 스마트 기기를 통한 접속한 후 서버-클라이언트 이미지 데이터 전송 기술을 이용하여 실시간 전자 출결이 가능한 장점이 있다. 또한 제안 시스템은 파이썬 플라스크 프레임워크를 기반으로 동작하기 때문에 운영체제에 상관없이 설치 및 운용이 가능한 장점을 가진다.

잡음 환경에서의 음성인식을 위한 온라인 빔포밍과 스펙트럼 감산의 결합 (Combining deep learning-based online beamforming with spectral subtraction for speech recognition in noisy environments)

  • 윤성욱;권오욱
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.439-451
    • /
    • 2021
  • 본 논문에서는 실제 환경에서의 연속 음성 강화를 위한 딥러닝 기반 온라인 빔포밍 알고리듬과 스펙트럼 감산을 결합한 빔포머를 제안한다. 기존 빔포밍 시스템은 컴퓨터에서 음성과 잡음을 완전히 겹친 방식으로 혼합하여 생성된 사전 분할 오디오 신호를 사용하여 대부분 평가되었다. 하지만 실제 환경에서는 시간 축으로 음성 발화가 띄엄띄엄 발성되기 때문에, 음성이 없는 잡음 신호가 시스템에 입력되면 기존 빔포밍 알고리듬의 성능이 저하된다. 이러한 효과를 경감하기 위하여, 심층 학습 기반 온라인 빔포밍 알고리듬과 스펙트럼 감산을 결합하였다. 잡음 환경에서 온라인 빔포밍 알고리듬을 평가하기 위해 연속 음성 강화 세트를 구성하였다. 평가 세트는 CHiME3 평가 세트에서 추출한 음성 발화와 CHiME3 배경 잡음 및 MUSDB에서 추출한 연속 재생되는 배경음악을 혼합하여 구성되었다. 음성인식기로는 Kaldi 기반 툴킷 및 구글 웹 음성인식기를 사용하였다. 제안한 온라인 빔포밍 알고리듬 과 스펙트럼 감산이 베이스라인 빔포밍 알고리듬에 비해 성능 향상을 보임을 확인하였다.

기계 학습 어플리케이션을 활용한 파노라마 영상에서의 정중 과잉치 식별 (Identification of Mesiodens Using Machine Learning Application in Panoramic Images)

  • 승재국;김재곤;양연미;임형빈;레반낫탕;이대우
    • 대한소아치과학회지
    • /
    • 제48권2호
    • /
    • pp.221-228
    • /
    • 2021
  • 이번 연구는 손쉽게 접근 가능한 웹사이트 기반 기계 학습 어플리케이션을 활용하여 파노라마 방사선 영상에서 과잉치 식별 모델을 학습시키고, 학습된 모델의 과잉치를 식별하는 성능을 평가하고자 하였으며, 인간 집단과의 성능을 비교하기 위한 연구를 진행하였다. 총 1604장의 5 - 7세 환자의 파노라마 이미지가 이번 연구에서 사용되었다. 연구에 사용된 모델은 Google에서 개발한 기계학습 모델인 Teachable Machine을 사용하였다. 과잉치 식별 모델을 훈련시키고 성능을 평가하기 위해 data set 1을 설정하였다. Data set 2는 학습모델과 인간 집단 간의 정확도 비교를 위해 설정하였다. 학습모델 및 인간 집단의 과잉치 식별 능력을 평가하기 위해 정확도(accuracy), 민감도(sensitivity), 특이도(specificity) 값을 사용하였다. Data set 1의 검증 결과, 평균 0.82의 분류 정확도를 얻었다. Data set 2의 테스트 결과, 모델의 정확도는 0.78이었다. 전공의군과 학생군의 평균 정확도는 각각 0.82, 0.69였다. 이번 연구는 유치열기 및 초기 혼합치열기 어린이의 파노라마 방사선 영상과 웹 기반 기계 학습 어플리케이션 이용하여 과잉치 식별 모델을 개발하였고 학습된 모델과 인간 의사 집단(전공의 및 학생) 간의 과잉치 식별 정도를 비교 연구하였다. 훈련모델의 분류 정확도는 전공의군과 비교 시 낮았지만 훈련받지 않은 치과 대학 학생군보다 분류 정확도가 높아 비전문가 학생 또는 일반의사에게 과잉치 진단 정확도를 높이는 데 활용될 가능성이 있음을 확인하였다.

전통문화 콘텐츠 표준체계를 활용한 자동 텍스트 분류 시스템 (A System for Automatic Classification of Traditional Culture Texts)

  • 허윤아;이동엽;김규경;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.39-47
    • /
    • 2017
  • 한국 문화의 역사, 전통과 관련된 디지털 웹 문서가 증가하게 되었다. 하지만 창작자 또는 전통 문화와 관련된 소재를 찾는 사용자들은 정보를 검색해도 결과가 충분하지 않았으며 원하는 정보를 얻지 못하는 경우가 나타나고 있다. 이런 효과적인 정보를 접하기 위해서는 문서 분류가 필요하다. 과거에 문서 분류는 작업자가 수작업으로 문서 분류하여 시간과 비용이 많이 소비하는 어려움이 있었지만, 최근 기계학습 기반으로 한 자동 문서 분류를 통해 효율적인 문서 분류가 이루어진다. 이에 본 논문은 전통문화 콘텐츠를 체계적인 분류체계로 구성한 한민족정보문화마당 데이터를 기반으로 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발한다. 본 연구는 한민족정보문화마당 텍스트 데이터에 대해 단어 빈도수를 추출하기 위해 TF-IDF모델, Bag-of-Words 모델, TF-IDF/Bag-of-Words를 결합한 모델을 적용하여 각각 SVM 분류 알고리즘을 사용하여 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발하여 성능평가를 확인하였다.

멀티미디어 교실을 위한 윈도우 NT 기반 스트림 서버 구현 (Implementation of a Windows NT Based Stream Server for Multimedia School Systems)

  • 손주영
    • 한국멀티미디어학회논문지
    • /
    • 제2권3호
    • /
    • pp.277-288
    • /
    • 1999
  • 개인화된 학습내용과 진도로 멀티미디어를 이용한 교재를 통해 학습 효과를 크게 제고할 수 있는 중등학교 멀티미디어 교실과 대학의 멀티미디어 센터를 위한 분산 스트림 서버 시스템을 구현하였다. 기존의 멀티미디어 정보 재생 시스템은 멀티미디어 교실에 적용하기에 적절하지 못한 제약점을 가지고 있다. 과다한 스트림당 비용이 요구되거나 그렇지 않으면 학습에 활용하기에는 저급한 재생 품질, 원활하지 못하는 시스템 및 서비스 확장성, 개별적 고유 클라이언트 환경에 의한 사용 이절감, 교사 조작 능력과 표현 의도가 전혀 고려되지 않은 일반적 저작 도구로 인한 교재 저작 어려움 그리고 구성 시스템간의 유기적 연동 부재로 인한 관리 어려움 등의 문제점을 극복한 시스댐을 구현하였다. 폐쇄되어 있는 교실에서뿐만 아니라 인터넷을 통한 광범 위한 원격 교육에 확장할 수 있도록 웹 기반 분산 시스댐으로 구성하였다. 전체 시스템의 구성 요소는 멀티미 디어 정보 저장 및 재생을 담당하는 스트림 서버 클라이언트 시스템, 분산되어 있는 서버의 통합 역할을 하는 서비스 게이트웨이, 그리고 클립 및 교재 저작을 위한 저작관리 시스템 등이다. 본 논문에서는 그 가운데 멀티미디어 정보를 저장, 전송하는스트립 서버의 설계 및 구현에 대해 설명한다. 윈도우NT서버에서 실행되는 한 대의 스트림 서버 시스템으로 한 학급의 클라이언트(50-60대)에서 MPEG~ 1 스트렴을 동시에 재생할 수 있는 성능을 아무런 시스템 변경 없이 응용 수준의 소프트웨어 엔진만으로 실현하였다. 그리고 타 구성 요소 시스템간의 유기적 연동을 통한 시스템의 확장성과 서비스의 유연성을 확보할 수 있었다.

  • PDF

준구조화된 정보소스에 대한 지식기반의 Wrapper 학습 에이전트 (A Knowledge-based Wrapper Learning Agent for Semi-Structured Information Sources)

  • 서희경;양재영;최중민
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권1_2호
    • /
    • pp.42-52
    • /
    • 2002
  • 정보추출은 한 문서에서 그 문서의 중심적 의미를 나타내는 특정 구성요소를 인식하여 추출하는 작업이다. 기존의 정보추출 시스템은 대부분 정보추출 규칙인 wrapper를 수동으로 구성하여 적용하였기 때문에 추출의 정확성은 높지만 유연성, 확장성, 효율성의 측면에서 문제점이 발생하였다. Wrapper를 자동으로 생성하는 일부 연구에서도 도메인 지식의 획득과 표현의 어려움, 그리고 여러 정보소스 사이에 나타나는 문서형태의 구조적 이질성 때문에 정확한 정보추출이 이루어지지 못했다. 본 논문에서는 이러한 이질적이고 복잡한 형태의 실세계 정보소스로부터의 정확한 정보추출을 추구하는 정보추출 에이전트인 XTROS를 제안한다. XTROS는 도메인 지식을 이용하여 준구조화된 형태의 정보소스에서 제공하는 문서를 분석하고 학습하여 wrapper들을 자동으로 생성하고, 이 wrapper들을 모두 XML 문서의 형태로 구성하는 새로운 표현기법을 제시함으로써 도메인 지식표현의 용이성과 wrapper 해석기 구현의 간결함, XML이 지닌 이식성 등을 최대한 활용하고자 하였다. Wrapper의 정보추출 규칙은 도메인 지식과 샘플 문서를 이용하여 자동으로 생성된다. 정보추출 규칙을 자동으로 생성하는 알고리즘의 핵심은 도메인 지식을 바탕을 샘플 문서의 각 논리 라인에 의미를 부여하고 이 논리 라인 의미의 나열로부터 반복되는 패턴을 찾아내는 것이다. 이 패턴의 위치와 구조를 XML 문서로 표현한 것이 wrapper가 된다. XTROS 시스템을 부동산 매물정보를 제공하는 다수의 실제 웹 정보소스에 대해서 테스트한 결과 이질성과 복잡성을 가진 대부분의 정보소스로부터 정확한 wrapper 생성과 정보추출이 가능하였다.

크라우드소싱 기반 문장재구성 방법을 통한 의견 스팸 데이터셋 구축 및 평가 (A Crowdsourcing-Based Paraphrased Opinion Spam Dataset and Its Implication on Detection Performance)

  • 이성운;김성순;박동현;강재우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권7호
    • /
    • pp.338-343
    • /
    • 2016
  • 웹이 정보 교환의 주된 수단으로 사용되면서, 온라인 리뷰의 중요도가 증가하는 동시에 사용자의 올바른 의사결정을 저해하는 의견 스팸 이슈가 부각되고 있으며, 관련 연구가 활발하게 진행되고 있다. 하지만 분석 및 학습에 필요한 기준 데이터셋의 부족함과 한계점들은 관련 연구의 발전을 더디게 하고 있다. 본 논문에서는 사실 리뷰를 모사한 새로운 형태의 Paraphrased Opinion Spam(POS) 데이터셋을 소개한다. 우리는 실제 스패머들이 스팸을 작성할 때 실제 리뷰를 참고한다는 경향에 착안하여, 실제 리뷰어들이 작성한 리뷰를 의역하는 과정을 통하여 본문에 포함되어 있는 사실 정보와 경험을 담은 스팸 데이터 셋을 생성하였다. 실험 결과, 새롭게 생성된 POS 데이터셋이 언어학적으로 실제 리뷰들과 유사하여 스팸 분류 모델을 이용하여 분류 시 기존의 데이터셋들보다 더 분류하기 힘들다는 것을 발견했다. 또한 데이터의 학습량에 따라서 스팸 리뷰의 분류 정확도가 비례적으로 증가하는 것을 확인함으로써, 데이터의 양이 스팸 분류 모델 성능에 중요한 요소로 작용한다는 것을 확인할 수 있었다.