• Title/Summary/Keyword: 웨이블릿 변환 분석

Search Result 177, Processing Time 0.021 seconds

Comparative analysis of wavelet transform and machine learning approaches for noise reduction in water level data (웨이블릿 변환과 기계 학습 접근법을 이용한 수위 데이터의 노이즈 제거 비교 분석)

  • Hwang, Yukwan;Lim, Kyoung Jae;Kim, Jonggun;Shin, Minhwan;Park, Youn Shik;Shin, Yongchul;Ji, Bongjun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.209-223
    • /
    • 2024
  • In the context of the fourth industrial revolution, data-driven decision-making has increasingly become pivotal. However, the integrity of data analysis is compromised if data quality is not adequately ensured, potentially leading to biased interpretations. This is particularly critical for water level data, essential for water resource management, which often encounters quality issues such as missing values, spikes, and noise. This study addresses the challenge of noise-induced data quality deterioration, which complicates trend analysis and may produce anomalous outliers. To mitigate this issue, we propose a noise removal strategy employing Wavelet Transform, a technique renowned for its efficacy in signal processing and noise elimination. The advantage of Wavelet Transform lies in its operational efficiency - it reduces both time and costs as it obviates the need for acquiring the true values of collected data. This study conducted a comparative performance evaluation between our Wavelet Transform-based approach and the Denoising Autoencoder, a prominent machine learning method for noise reduction.. The findings demonstrate that the Coiflets wavelet function outperforms the Denoising Autoencoder across various metrics, including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE). The superiority of the Coiflets function suggests that selecting an appropriate wavelet function tailored to the specific application environment can effectively address data quality issues caused by noise. This study underscores the potential of Wavelet Transform as a robust tool for enhancing the quality of water level data, thereby contributing to the reliability of water resource management decisions.

Precise Outdoor Localization of a GPS-INS Integration System Using Discrete Wavelet Transforms and Unscented Particle Filter (이산 웨이블릿 변환과 Unscented 파티클 필터를 이용한 GPS-INS 결합 시스템의 실외 정밀 위치 추정)

  • Seo, Won-Kyo;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.82-90
    • /
    • 2011
  • This paper proposes an advanced outdoor localization algorithm of a GPS(global positioning system)-INS(inertial navigation system) integration system. In order to reduce noise from the internal INS sensors, discrete wavelet transform and variable threshold method are utilized. The UPF (unscented particle filter) combines GPS information and INS signals to implement precise outdoor localization algorithm and to reduce noise caused by the acceleration, deceleration, and unexpected slips. The conventional de-noising method is mainly carried out using a low pass filter and a high pass filter which essentially result in signal distortions. This newly proposed system utilizes the vibration information of actuator according to fluctuations of the velocity to minimize signal distortions. The UPF also resolves non-linearities of the actuator and non-normal distributions of noises. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

A Depth Creation Method Using Frequency Based Focus/Defocus Analysis In Image (영상에서 주파수 기반의 초점/비초점 분석을 이용한 깊이 지도 생성 기법)

  • Lee, Seung Kap;Park, Young Soo;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.309-316
    • /
    • 2014
  • In this paper, we propose an efficient detph map creation method using Graph Cut and Discrete Wavelet Transform. First, we have segmented the original image by using Graph Cut to process with its each areas. After that, the information which describes segmented areas of original image have been created by proposed labeling method for segmented areas. And then, we have created four subbands which contain the original image's frequency information. Finally, the depth map have been created by frequency map which made with HH, HL subbands and depth information calculation along the each segmented areas. The proposed method can perform efficient depth map creation process because of dynamic allocation using depth information. We also have tested the proposed method using PSNR(Peak Signal to Noise Ratio) method to evaluate ours.

Stereo Image Blind Watermarking Scheme based-on Discrete Wavelet Transform and adaptive Disparity Estimation (웨이블릿 변환과 적응적 변이 추정을 이용한 스테레오 영상 블라인드 워터마킹)

  • Ko Jung-Hwan;Kim Sung-Il;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.130-138
    • /
    • 2006
  • In this paper, a new stereo image watermarking scheme based-on adaptive disparity estimation algorithm is proposed. That is, a watermark image is embedded into the right image of a stereo image pair by using the DWT and disparity information is extracted from this watermarked right image and the left image. And then, both of this extracted disparity information and the left image are transmitted to the recipient through the communication channel. At the receiver, the watermarked right image is reconstructed from the received left image and disparity information through an adaptive matching algorithm. a watermark image is finally extracted from this reconstructed right image. From some experiments using CCETT's 'Manege' and 'Friends' images as a stereo image and English alphabet '3DRC' as a watermark image, it is found that the PSNRs of the watermarked image from the reconstructed right images through the adaptive matching algorithm & DWT is improved 2.03 dB, 3.03 dB and robusted against various attacks. These experimental results also suggest a possibility of practical implementation of an adaptive matching also-rithm-based stereo imagewatermarking scheme proposed in this paper.

Automatic fire detection system using Bayesian Networks (베이지안 네트워크를 이용한 자동 화재 감지 시스템)

  • Cheong, Kwang-Ho;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, we propose a new vision-based fire detection method for a real-life application. Most previous vision-based methods using color information and temporal variation of pixel produce frequent false alarms because they used a lot of heuristic features. Furthermore there is also computation delay for accurate fire detection. To overcome these problems, we first detected candidated fire regions by using background modeling and color model of fire. Then we made probabilistic models of fire by using a fact that fire pixel values of consecutive frames are changed constantly and applied them to a Bayesian Network. In this paper we used two level Bayesian network, which contains the intermediate nodes and uses four skewnesses for evidence at each node. Skewness of R normalized with intensity and skewnesses of three high frequency components obtained through wavelet transform. The proposed system has been successfully applied to many fire detection tasks in real world environment and distinguishes fire from moving objects having fire color.

A study on Power Quality Recognition System using Wavelet Transformation and Neural Networks (웨이블릿 변환과 신경회로망을 이용한 전력 품질 인식 시스템에 관한 연구)

  • Chong, Won-Yong;Gwon, Jin-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • Nonstationary power quality(PQ) signals which the Sag, Swell, Impulsive Transients, and Harmonics make sometimes the operations of the industrial power electronics equipment, speed and motion controller, plant process control systems in the undesired environments. So, this PQ problem might be critical issues between power suppliers and consumers. Therefore, We have studied the PQ recognition system in order to acquire, analyze, and recognize the PQ signals using the software, i.e, MATLAB, Simulink, and CCS, and the hardware. i.e., TMS320C6713DSK(TI), The algorithms of the PQ recognition system in the Wavelet transforms and Backpropagation algorithms of the neural networks. Also, in order to verify the real-time performances of the PQ recognition system under the environments of software and hardware systems, SIL(Software In the Loop) and PIL(Processor In the Loop) were carried out, resulting in the excellent recognition performances of average 99%.

Wavelet based Fuzzy Integral System for 3D Face Recognition (퍼지적분을 이용한 웨이블릿 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak;Shim, Jae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.616-626
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial feature information and the face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple frequency domains for each depth image and depth fusion using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. It is used as the reference point to normalize for orientated facial pose and extract multiple areas by the depth threshold values. In the second step, we adopt as features for the authentication problem the wavelet coefficient extracted from some wavelet subband to use feature information. The third step of approach concerns the application of eigenface and Linear Discriminant Analysis (LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) show the highest recognition rate among the regions, and the depth fusion method achieves 98.6% recognition rate, incase of fuzzy integral.

Wavelet-based Statistical Noise Detection and Emotion Classification Method for Improving Multimodal Emotion Recognition (멀티모달 감정인식률 향상을 위한 웨이블릿 기반의 통계적 잡음 검출 및 감정분류 방법 연구)

  • Yoon, Jun-Han;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1140-1146
    • /
    • 2018
  • Recently, a methodology for analyzing complex bio-signals using a deep learning model has emerged among studies that recognize human emotions. At this time, the accuracy of emotion classification may be changed depending on the evaluation method and reliability depending on the kind of data to be learned. In the case of biological signals, the reliability of data is determined according to the noise ratio, so that the noise detection method is as important as that. Also, according to the methodology for defining emotions, appropriate emotional evaluation methods will be needed. In this paper, we propose a wavelet -based noise threshold setting algorithm for verifying the reliability of data for multimodal bio-signal data labeled Valence and Arousal and a method for improving the emotion recognition rate by weighting the evaluation data. After extracting the wavelet component of the signal using the wavelet transform, the distortion and kurtosis of the component are obtained, the noise is detected at the threshold calculated by the hampel identifier, and the training data is selected considering the noise ratio of the original signal. In addition, weighting is applied to the overall evaluation of the emotion recognition rate using the euclidean distance from the median value of the Valence-Arousal plane when classifying emotional data. To verify the proposed algorithm, we use ASCERTAIN data set to observe the degree of emotion recognition rate improvement.

Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration (생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임)

  • Kim, Sungwon;Seo, Youngmin;Zakhrouf, Mousaab;Malik, Anurag
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1037-1051
    • /
    • 2021
  • Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.

Frequency characteristics of 2D-DWT subbands and Digital Watermarking Characteristics (2차원 DWT 부대역의 주파수 특성과 디지털 워터마킹 특성)

  • Kang, I-Seul;Lee, Yong-Seok;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.103-106
    • /
    • 2016
  • 인터넷 사용의 발달로 디지털 미디어 영상에 대한 불법 복제, 불법 배포 등의 문제가 완연해짐에 따라 영상의 제작자의 소유권과 저작권을 보호할 수 있는 워터마크 기법이 많이 연구되고 있다. 워터마크 시스템은 워터마크 삽입 후, 삽입정보를 알 수 없어야하는 비가시성 특성과 여러 공격에도 훼손되지 않고 추출될 수 있는 강인함을 가지고 있어야 한다. 이에 본 논문은 이산 웨이블릿 변환(DWT)으로 생성되는 부대역의 점유 주파수대역 특성과 공격이 이 부대역들에 미치는 영향을 분석하고, 이를 사용하여 디지털 워터마킹을 수행하였을 때 추출률을 최고로 하기 위해서는 변환된 부대역이 특정 범위내의 해상도를 가져야 한다는 것을 보인다. 본 연구는 실험적 방법으로 모든 부분연구는 실험에 의해서 결정된다.

  • PDF