• 제목/요약/키워드: 웨이블릿변환

검색결과 716건 처리시간 0.026초

시계열 자료의 웨이블릿 분석을 위한 모 웨이블릿의 선정문제 (Selection of a Mother Wavelet Using Wavelet Analysis of Time Series Data)

  • 이현욱;송성욱;주국화;이문석;유철상
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.259-259
    • /
    • 2019
  • 시계열 자료들을 분석하고자 하는 경우 자료가 정상성(stationarity)을 만족하는 경우는 드물다. 특히 계절성을 제거한 자료들에서는 정량화하기 어려운 주기성이 많이 관찰된다. 즉, 어떤 특정지역에서 나타나는 현상이 다른 기상 현상에 영향을 미칠 것은 자명한 일이나 그 관련성이 선형(linearity)일 가능성은 극히 드물다. 따라서 그들 사이의 관련성이 선형성에 근거한 지표들로 정량화되어야 한다. 이러한 문제점을 해결하기 위해서 다양한 방법이 사용되며 그중에서 웨이블릿 분석을 통해 본 연구를 진행하였다. 웨이블릿 변환(wavelet transforms)은 특수한 함수의 집합으로 구성되어 기존 웨이블릿 신호의 분석을 위해 사용되는 방법이다. 이 변환은 푸리에 변환에서 변형된 방법으로 특정한 기저 함수(base function)를 이용하여 기존의 시계열 자료를 주파수로 바꾸는 변환이다. 웨이블릿 변환에서 기저 함수를 모 웨이블릿이라고 하며 이를 천이, 확대 및 축소 과정을 통해 주파수를 구성한다. 웨이블릿 분석은 모 웨이블릿을 분해하고 재결합하여 시계열 분석을 할 수 있다. 모 웨이블릿 함수에는 Haar, Daubechies, Coiflets, Symlets, Morlet, Mexican Hat, Meyer 등의 여러 가지 종류의 모 웨이블릿 함수가 있으며 모 웨이블릿이 달라지면 결과가 다르게 나타난다. 기존에는 Morlet 웨이블릿을 주로 이용하여 주파수분석에 사용하여 결과를 도출하였다. 그리고 시계열 자료는 크게 백색잡음(White Noise), 장기기억(Long Term Memory), 단기기억(Short Term Memory)으로 나뉜다. 각 시계열 자료의 종류에 따라 임의의 시계열 자료를 산정하여 그에 따른 웨이블릿 분석을 통해 모 웨이블릿의 특성을 도출하였다. 본 연구에서는 웨이블릿 분석을 통해 시계열 자료의 최적 모 웨이블릿을 결정하고자 남방진동지수(SOI), 북극진동지수(AOI)의 자료를 이용하여 웨이블릿 분석을 시도하였다. 웨이블릿 분석은 모 웨이블릿에 따라 달라지는 결과를 토대로 분석하였으며 이를 정상성과 지속성에 따라 분류된 시계열에 적용하여 최적 모 웨이블릿을 결정하고자 하였다. 본 연구에서는 임의의 시계열 자료에서 설정한 최적의 모 웨이블릿을 AOI와 SOI와 같은 실제 시계열 자료에 대입하여 분석을 진행하였다. 본 연구에서는 시계열 자료의 종류를 구분하고 자료의 특성에 따라 가장 적합한 모 웨이블릿을 구하고자 하였다.

  • PDF

이차전지의 이산 웨이블릿 변환(DWT) 및 웨이블릿 패킷 변환(WPT) 비교 분석 (A Comparative Study of Discrete Wavelet Transform(DWT) and Wavelet Packet Transform(WPT) for a Li-Ion Cell)

  • 김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.152-153
    • /
    • 2014
  • 본 논문에서는 이차전지의 특성비교/분석을 위해 이산 웨이블릿 변환(DWT;discrete wavelet transform)과 웨이블릿 패킷 변환(WPT;wavelet packet transform)을 적용한 연구를 소개한다. 다해상도 분석(MRA; multi resolution analysis)의 시간-주파수 분석을 통해 저주파 성분(approximation;$A_n$)과 고주파 성분(detail;$D_n$)로 분해되는 것은 두 방법 동일하다. 하지만, 이산 웨이블릿 변환이 단순히 저대역 부분만 계속 분해하는 것과 달리 웨이블릿 패킷 변환은 저대역과 고대역을 모두 분해하여 높은 분해성능을 가지는 웨이블릿의 일반화이다. 웨이블릿 패킷 변환을 자세히 소개하고 이를 이차전지에 적용하여 이산 웨이블릿 변환과의 상관성을 정리하였다.

  • PDF

웨이블릿 계수를 이용한 디지털영상에서의 잡음제거 (Noise Reduction of Digital Image Using Wavelet Coefficient)

  • 남현주;최승권;신승수;조용환
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 춘계종합학술대회논문집
    • /
    • pp.376-382
    • /
    • 2003
  • 최근에, 신호와 영상 데이터에서의 잡음을 제거하기 위한 다양한 형태의 웨이블릿 변환 기법들이 나왔다. 원래 영상에서 잡음을 분리시키는 방법을 이용함으로써, 웨이블릿 변환은 영상의 모서리 요소를 유지할 수 있다. 이런 웨이블릿 분석은 기저 함수가 웨이블릿으로 코드화 될 때 완전하게 이루어진다. 본 논문에서는 영상 신호로부터 잡음을 제거하기 위해 웨이블릿 변환을 사용하는 방법을 제안한다. Donoho 와 Johnstone 에 의해 제안된 웨이블릿 변환 방법이 있지만, 그 변환 방법은 영상의 모든 잡음을 제거할 만큼의 신뢰성이 없다. 이에 본 논문에서는 잡음의 대역폭과 진폭의 형태에 맞는 웨이블릿의 축소량과 경계치에 대한 하나의 알고리즘을 제시하고자 한다.

  • PDF

웨이블릿 변환과 인공신경망을 이용한 결함분류 프로그램 개발과 용접부 결함 AE 신호에의 적용 연구 (Development of Defect Classification Program by Wavelet Transform and Neural Network and Its Application to AE Signal Deu to Welding Defect)

  • 김성훈;이강용
    • 비파괴검사학회지
    • /
    • 제21권1호
    • /
    • pp.54-61
    • /
    • 2001
  • 웨이블릿 변환과 인공신경망을 이용하여 AE 신호를 분류하는 소프트웨어 패키지를 개발하였다. 웨이블릿 변환으로는 연속 웨이블릿 변환과 이산 웨이블릿 변환을 모두 고려하였으며, 인공신경망의 모델로는 오류 역전파 인공신경망을 사용하였다. 분류에 사용된 AE 신호는 용접부에 인공결함을 가진 시편의 3점 굽힘시험에서 발생한 신호이다. 개발된 소프트웨어 패키지를 이용하여 이 신호를 웨이블릿 변환시켜 생성된 시간-주파수 평면상에서 특징값을 추출하고 이를 인공신경망에 학습하여 인공신경망 분류기를 설계하고 검증하였다. 본 연구에서 개발된 소프트웨어 패키지를 이용한 AE 신호 분류법이 유용함을 보이고, 또한 연속 웨이블릿 변환과 이산 웨이블릿 변환에 의한 분류 결과를 비교하였다.

  • PDF

웨이블릿 변환 기반의 초고해상도 기법 (Wavelet based Super-Resolution method)

  • 현지호;임종명;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.524-527
    • /
    • 2011
  • 본 논문에서는 웨이블릿 기저를 적용하여 영상을 주파수 대역이 각각 다른 영상으로 분리하고 이들과 원본 영상을 조합 후 웨이블릿 역변환을 적용하여 고해상도의 영상을 획득하는 초고해상도 기법을 제안한다. 기존의 단일 영상을 이용한 초고해상도 기법의 경우 영상에서의 고주파 대역을 찾기 위해 확률 기반의 여러 다양한 방법이 제시되었으나 연산 복잡도 증가로 인해 처리시간 증가 등의 문제가 발생한다. 이러한 문제를 해결하기 위해 웨이블릿 기저 함수를 이용한 다양한 초고해상도 기법이 제안되었다. 본 논문에서는 주어진 영상 내에서 웨이블릿 기저 함수를 이용하여 주파수 대역 별로 영상을 먼저 생성하고, 원본 영상과 주파수 대역 별로 분리된 영상을 조합한 후 웨이블릿 역변환을 적용하여 해상도를 증가시키는 새로운 기법을 제안한다. 실험을 통해 제안하는 웨이블릿 기반의 초고해상도 기법이 기존의 해상도 향상을 위한 다양한 보간법에 비해 향상된 효율을 보이는 것을 확인하였다.

  • PDF

웨이블릿 필터계수를 적용한 그레이 이미지의 의사컬러 향상에 관한 연구 (The Psuedocolor Image Enhancement on Gray Image with Wavelet Filter Coefficients)

  • 유병근;김윤호;류광렬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.260-263
    • /
    • 2003
  • 본 논문은 그레이 영상에 웨이블릿 필터계수를 적용하여 의사컬러 이미지를 향상한 연구이다. 의사컬러 향상은 웨이블릿 변환을 사용해 분해능을 상승시켰고, 웨이블릿 필터계수를 사용하여 RGB 영상을 추출한 후 의사변환 하였다. 웨이블릿 필터계수를 사용한 의사컬러 변환은 일반적인 웨이블릿 변환에 비해 30dB이상 향상 되었다.

  • PDF

B-스플라인 웨이블릿 변환을 적용한 적외선 이미지의 의사컬러 (A Study on the Psuedocolor Image Enhancement of Infrared Image using B-Spline Wavelet Transform.)

  • 유병근;김정태;류광렬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.192-195
    • /
    • 2003
  • 본 논문은 적외선 영상에 B-스플라인 웨이블릿 변환을 적용하여 의사컬러 이미지를 향상시킨 연구이다. 의사컬러 향상은 주파수 손실을 최소화하고 분해능을 향상시키기 위해 B-스플라인을 적용하였고, 웨이블릿 변환하여 RGB 영상을 추출하여 의사변환 하였다. B-스플라인 웨이블릿 변환은 일반적인 웨이블릿 변환에 비해 3dB이상 향상되었다.

  • PDF

신호 종속적인 웨이블릿 변환과 무 손실 영상 압축 (Signal-Dependent Wavelet Transforms and Its Application to Lossless Image Compression)

  • 유훈;정제창
    • 한국통신학회논문지
    • /
    • 제26권10B호
    • /
    • pp.1409-1418
    • /
    • 2001
  • 영상 압축 분야에서 많은 정수 웨이블릿 변환들이 손실 압축 성능, 무 손실 압축 성능, 그리고 복잡성을 기준으로 비교되었다. 응용분야에 따라서 상대적인 조건에 의한 최적인 웨이블릿 변환을 선택함에 따라서 여러 웨이블릿 변환들 중에서 상대적으로 우수한 변환들이 존재함이 알려졌다. 본 논문에서는 우수한 성능을 보이는 웨이블릿 필터들을 리프팅 기법을 응용해서 통합한다. 이들 우수한 몇 개의 변환들은 간단한 파라미터로 표현이 가능하고 이들 파라미터들은 주어진 입력 영상에 종속적이다. 본 논문에서는 이들 파라이터를 구현하는 이론적인 결과와 실험결과를 제공한다. 제안된 방법이 S+P[2] 방법보다 대다수 경우에서 우수함을 실험결과로서 보여주고 있다.

  • PDF

인지 모델과 웨이블릿 패킷 변환을 이용한 잡음 제거기 설계 (Design of the Noise Suppressor Using the Perceptual Model and Wavelet Packet Transform)

  • 김미선;박서영;김영주;이인성
    • 한국음향학회지
    • /
    • 제25권7호
    • /
    • pp.325-332
    • /
    • 2006
  • 본 논문은 인지 모델과 웨이블릿 패킷 변환을 이용하여 단일 채널에서 유색잡음 또는 비정지적 성격의 잡음을 제거하는데 목적을 두고 있다. 이러한 잡음은 부대역을 나누어 접근해야하며, 잔여잡음과 음성의 왜곡으로 인한 문제를 해결하기 위해 웨이블릿 패킷 변환 후 웨이블릿 계수 문턱값을 적절히 개선해야 한다. 본 논문에서 부대역은 웨이블릿 패킷변환 후에 스케일과 임계대역을 매칭하여 설계하였으며, 웨이블릿 계수 문턱값은 세그멘탈 신호대잡음비 (seg_SNR)와 노이즈마스킹 임계값 (Noise Masking Threshold W)을 이용하여 적응적으로 계산했다. 결과적으로 TTA 표준인 EVRC 잡음 제거기와 유사한 성능을 가졌으며, 웨이블릿 변환 후 웨이블릿 계수에 Universal 문턱값을 적용하는 것보다 PESQ-MOS 값이 0.29 높았다. 인코딩과 디코딩 후 PESQ-MOS 값은 EVRC 잡음 제거기보다 0.23 정도 우수한 성능을 가졌다.

웨이블릿 변환영역에서 칼라 히스토그램과 에너지 벡터를 이용한 컷 검출 (Cut Detection Using Color Histogram and Energy Vector in Wavelet Transform Domain)

  • 김수정;정성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.467-469
    • /
    • 2000
  • 본 논문은 웨이블릿 변환영역 하에서 칼라 히스토그램과 에너지 벡터를 이용한 컷검출 방법을 제안한다. 기존의 컷 검출 방법들은 대부분 공간영역과 변환영역 각각에 대한 특징을 이용해 컷을 검출하였다. 그러나 본 논문에서는 웨이블릿 변환영역 하에서도 공간영역 특성을 유지하는 LL밴드 상의 칼라 히스토그램과 LH와 HL밴드의 에너지 값을 변환영역 특성으로 함께 고려하였다. 최근 영상 압축 표준에 웨이블릿을 이용한 압축기법이 사용되고 있으므로, 제안한 방법은 웨이블릿 압축 영상에서 압축을 해제할 필요 없이 검출하는데 사용되어질 수 있다. 제안한 방법의 성능평가를 위하여 광고, 뉴스, 스포츠, 영화 등 5개 분야의 다양한 TV 프로그램에서 약 10,000개의 프레임으로 실험한 결과, Recall에서는 약 90%, Precision에서는 약 94%의 컷 검출 성능을 나타내었다.

  • PDF